Bài 2.46 trang 124 SBT giải tích 12


Giải bài 2.46 trang 124 sách bài tập giải tích 12. Giải các phương trình mũ sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình mũ sau:

LG a

\(\displaystyle {(0,75)^{2x - 3}} = {\left( {1\frac{1}{3}} \right)^{5 - x}}\)

Phương pháp giải:

Sử dụng phương pháp đưa về cùng cơ số \(\displaystyle {a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\).

Lời giải chi tiết:

\(\displaystyle {\left( {\frac{3}{4}} \right)^{2x - 3}} = {\left( {\frac{4}{3}} \right)^{5 - x}} \) \(\Leftrightarrow {\left( {\frac{3}{4}} \right)^{2x - 3}} = {\left[ {{{\left( {\frac{3}{4}} \right)}^{ - 1}}} \right]^{5 - x}}\) \(\Leftrightarrow {\left( {\frac{3}{4}} \right)^{2x - 3}} = {\left( {\frac{3}{4}} \right)^{x - 5}}\)\(\displaystyle  \Leftrightarrow 2x - 3 = x - 5 \Leftrightarrow x =  - 2\)

LG b

\(\displaystyle {5^{{x^2} - 5x - 6}} = 1\)

Phương pháp giải:

Sử dụng phương pháp đưa về cùng cơ số \(\displaystyle {a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\).

Lời giải chi tiết:

\(\displaystyle {5^{{x^2} - 5x - 6}} = {5^0} \Leftrightarrow {x^2} - 5x - 6 = 0\)\(\displaystyle  \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x =  - 1}\\{x = 6}\end{array}} \right.\)

LG c

\(\displaystyle {\left( {\frac{1}{7}} \right)^{{x^2} - 2x - 3}} = {7^{x + 1}}\)

Phương pháp giải:

Sử dụng phương pháp đưa về cùng cơ số \(\displaystyle {a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\).

Lời giải chi tiết:

\(\displaystyle {\left( {\frac{1}{7}} \right)^{{x^2} - 2x - 3}} = {\left( {\frac{1}{7}} \right)^{ - x - 1}}\)\(\displaystyle  \Leftrightarrow {x^2} - 2x - 3 =  - x - 1\) \(\displaystyle  \Leftrightarrow {x^2} - x - 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x =  - 1}\\{x = 2}\end{array}} \right.\)

LG d

\(\displaystyle {32^{\frac{{x + 5}}{{x - 7}}}} = 0,{25.125^{\frac{{x + 17}}{{x - 3}}}}\)

Phương pháp giải:

Logarit cơ số \(\displaystyle 2\) cả hai vế và giải phương trình.

Lời giải chi tiết:

\(\displaystyle {32^{\frac{{x + 5}}{{x - 7}}}} = 0,{25.125^{\frac{{x + 17}}{{x - 3}}}}\)

\(\begin{array}{l}
\Leftrightarrow {\left( {{2^5}} \right)^{\frac{{x + 5}}{{x - 7}}}} = \frac{1}{4}.{\left( {{5^3}} \right)^{\frac{{x + 17}}{{x - 3}}}}\\
\Leftrightarrow {4.2^{5.\frac{{x + 5}}{{x - 7}}}} = {5^{3.\frac{{x + 17}}{{x - 3}}}}\\
\Leftrightarrow {2^2}{.2^{\frac{{5x + 25}}{{x - 7}}}} = {5^{\frac{{3x + 51}}{{x - 3}}}}\\
\Leftrightarrow {2^{2 + \frac{{5x + 25}}{{x - 7}}}} = {5^{\frac{{3x + 51}}{{x - 3}}}}
\end{array}\)

\(\displaystyle  \Leftrightarrow {2^{\frac{{7x + 11}}{{x - 7}}}} = {5^{\frac{{3x + 51}}{{x - 3}}}}\)

Lấy logarit cơ số 2 cả hai vế, ta được:

\({\log _2}\left( {{2^{\frac{{7x + 11}}{{x - 7}}}}} \right) = {\log _2}\left( {{5^{\frac{{3x + 51}}{{x - 3}}}}} \right)\)

\(\displaystyle \Leftrightarrow \frac{{7x + 11}}{{x - 7}} = \frac{{3x + 51}}{{x - 3}}{\log _2}5\)

\(\Rightarrow \left( {7x + 11} \right)\left( {x - 3} \right) \) \(= \left( {3x + 51} \right)\left( {x - 7} \right){\log _2}5\)

\(\displaystyle  \Leftrightarrow 7{x^2} - 10x - 33\)\(\displaystyle  = (3{x^2} + 30x - 357){\log _2}5\)  (với \(\displaystyle x \ne 7,x \ne 3\))

\(\displaystyle  \Leftrightarrow (7 - 3{\log _2}5){x^2} - 2(5 + 15{\log _2}5)x\)\(\displaystyle  - (33 - 357{\log _2}5) = 0\)

Ta có: \(\displaystyle \Delta ' = {(5 + 15{\log _2}5)^2}\)\(\displaystyle  + (7 - 3{\log _2}5)(33 - 357{\log _2}5)\)\(\displaystyle  = 1296\log _2^25 - 2448{\log _2}5 + 256 > 0\)

Phương trình đã cho có hai nghiệm: \(\displaystyle x = \frac{{5 + 15{{\log }_2}5 \pm \sqrt {\Delta '} }}{{7 - 3{{\log }_2}5}}\), đều thỏa mãn điều kiện \(\displaystyle x \ne 7,x \ne 3\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài