Bài 24 trang 72 Vở bài tập toán 9 tập 1


Giải bài 24 trang 72 VBT toán 9 tập 1. Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau ...

Đề bài

Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:

a) a = 2 và đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5

b) a = 3 và đồ thị của hàm số đi qua điểm A(2 ; 2)

c) Đồ thị của hàm số song song với đường thẳng \(y = \sqrt 3 x\) và đi qua điểm \(B\left( {1\,;\,\sqrt 3  + 5} \right)\)

Phương pháp giải - Xem chi tiết

a) Thay \(a = 2;x = 1,5\) và \(y = 0\) vào hàm số bậc nhất đã cho rồi tính giá trị của b.

b) Thay \(a = 3;x = 2\) và \(y = 2\) vào hàm số bậc nhất đã cho rồi tính giá trị của b.

c) Tìm a để đồ thị của hàm số song song với đường thẳng \(y = \sqrt 3 x\)

   Thay tiếp giá trị của \(x = 1;y = \sqrt 3  + 5\) vào hàm số để tìm giá trị của b.

Lời giải chi tiết

a) Với \(a = 2\) ta có hàm số \(y = 2x + b\) .

Đồ thị cắt trục hoành tại điểm có hoành độ bằng \(1,5\) nên tọa độ của giao điểm là \(x = 1,5;y = 0\). Do đó ta có :

\(0 = 2.1,5 + b \Leftrightarrow b =  - 3\)

Vậy ta có hàm số bậc nhất \(y = 2x - 3\)

b) Với \(a = 3\), ta có hàm số \(y = 3x + b\).

Vì đồ thị đi qua điểm \(A\left( {2;2} \right)\) nên ta có :

\(2 = 3.2 + b \Rightarrow b =  - 4\)

Vậy ta có hàm số bậc nhất \(y = 3x - 4\)

c) Vì đồ thị của hàm số là đường thẳng song song với đường thẳng \(y = \sqrt 3 x\) nên ta có \(a = \sqrt 3 \). Do đó, ta có hàm số \(y = \sqrt 3 x + b.\)

Vì đồ thị đi qua điểm \(B\left( {1;\sqrt 3  + 5} \right)\) nên ta có :

\(\sqrt 3  + 5 = \sqrt 3 .1 + b \Rightarrow b = 5\)

Vậy ta có hàm số bậc nhất \(y = \sqrt 3 x + 5\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài