Bài 19 trang 67 Vở bài tập toán 9 tập 1


Giải bài 19 trang 67 VBT toán 9 tập 1. Cho hai hàm số bậc nhất y = 2x + 3k và y =(2m + 1)x + 2k - 3...

Đề bài

Cho hai hàm số bậc nhất \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\)

Tìm điều kiện đối với m và k để đồ thị của hai hàm số là:

a) Hai đường thẳng cắt nhau.

b) Hai đường thẳng song song với nhau.

c) Hai đường thẳng trùng nhau.

Phương pháp giải - Xem chi tiết

- Tìm điều kiện để hàm số đã cho là hàm số bậc nhất.

- Vận dụng kiến thức: Hai đường thẳng \(y = ax + b\,\,\left( {a \ne 0} \right)\) và \(y = a'x + b'\,\,\left( {a' \ne 0} \right)\)

- Cắt nhau khi \(a \ne a'\)

- Song song với nhau khi \(a = a'\) và \(b \ne b'\)

- Trùng nhau khi \(a = a'\) và \(b = b'\).

Lời giải chi tiết

a) Do \(y = \left( {2m + 1} \right)x + 2k - 3\) là hàm số bậc nhất nên hệ số của x phải khác 0, nghĩa là \(2m + 1 \ne 0 \Leftrightarrow m \ne  - \dfrac{1}{2}\) .

Hai đường thẳng \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\) cắt nhau khi và chỉ khi: \(2m + 1 \ne 2 \Leftrightarrow m \ne \dfrac{1}{2}\)

Vậy điều kiện đối với m là : \(m \ne  - \dfrac{1}{2}\)  và \(m \ne \dfrac{1}{2}\) , \(k\) tùy ý.

b) Hai đường thẳng \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\) song song với nhau khi :

\(\left\{ \begin{array}{l}2m + 1 \ne 0\\2m + 1 = 2\\2k - 3 \ne 3k\end{array} \right.\)

\(2m + 1 \ne 0 \Leftrightarrow m \ne  - \dfrac{1}{2}\)

\(2m + 1 = 2 \Leftrightarrow m = \dfrac{1}{2}\)

\(2k - 3 \ne 3k \Leftrightarrow k \ne  - 3\)

Vậy hai đường thẳng đã cho song song với nhau khi \(m = \dfrac{1}{2}\) và \(k \ne  - 3\).

c) Hai đường thẳng \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\) trùng nhau khi :

\(\left\{ \begin{array}{l}2m + 1 \ne 0\\2m + 1 = 2\\2k - 3 = 3k\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ne  - \dfrac{1}{2}\\m = \dfrac{1}{2}\\k =  - 3\end{array} \right.\)

Vậy hai đường thẳng đã cho trùng nhau khi \(m = \dfrac{1}{2}\) và\(k =  - 3\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài