Trả lời câu hỏi 1 trang 63 SGK Hình học 12


Trong không gian Oxyz, cho một điểm M. Hãy phân tích vecto OM theo 3 vecto không đồng phẳng i, j, k đã cho trên các trục Ox, Oy, Oz

Đề bài

Trong không gian \(Oxyz\), cho một điểm \(M\). Hãy phân tích vecto \(\overrightarrow {OM} \) theo ba vecto không đồng phẳng \(\overrightarrow i ;\,\overrightarrow j ;\,\overrightarrow k \) đã cho trên các trục \(Ox, Oy, Oz\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+ nếu \(M(x,y,z) \Rightarrow \overrightarrow {OM} (x,y,z)\)

+ Vecto \(\overrightarrow {OM} \) có toa độ \((x,y,z)\) tức là: \(\overrightarrow {OM} (x,y,z) = x.\overrightarrow i  + y.\overrightarrow j  + z.\overrightarrow k \) với \(\overrightarrow i ;\overrightarrow j ;\overrightarrow k \) lần lượt là các vecto đơn vị của \(Ox, Oy, Oz\)

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Gọi tọa độ của \(M\) trong không gian là \((x, y, z)\)

\(\Rightarrow \overrightarrow {OM} (x,y,z)\) hay \(\overrightarrow {OM}  = x\overrightarrow {i}  + y\overrightarrow {{\rm{j}}}  + z\overrightarrow {k} \)

Loigiaihay.com


Bình chọn:
3.8 trên 12 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí