Bài 6 trang 68 SGK Hình học 12

Bình chọn:
3.1 trên 7 phiếu

Giải bài 6 trang 68 SGK Hình học 12. Lập phương trình mặt cầu trong hai trường hợp sau.

Đề bài

Lập phương trình mặt cầu trong hai trường hợp sau đây:

a) Có đường kính \(AB\) với \(A(4 ; -3 ; 7),  B(2 ; 1 ; 3)\)

b) Đi qua điểm \(A = (5; -2; 1)\) và có tâm \(C(3; -3; 1)\)

Phương pháp giải - Xem chi tiết

a) Mặt cầu có tâm là trung điểm của AB và bán kính bằng AB/2.

b) Mặt cầu có tâm C và bán kính CA.

Lời giải chi tiết

a) Gọi \(I\) là trung điểm của \(AB\), thì mặt cầu có đường kính \(AB\), có tâm \(I\) và bán kính \(r =\frac{1}{2}AB=IA\).

Ta có : 

\(\begin{array}{l}\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{4 + 2}}{2} = 3\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{ - 3 + 1}}{2} = - 1\\{z_I} = \frac{{{z_A} + {z_B}}}{2} = \frac{{7 + 3}}{2} = 5\end{array} \right. \Rightarrow I\left( {3; - 1;5} \right)\\AB = \sqrt {{{\left( {2 - 4} \right)}^2} + {{\left( {1 + 3} \right)}^2} + {{\left( {3 - 7} \right)}^2}} = 6 \Rightarrow R = \frac{{AB}}{2} = 3\end{array}\)

Do vậy phương trình mặt cầu đường kính \(AB\) có dạng: \({\left( {x{\rm{ }} - {\rm{ }}3} \right)^{2}} + {\rm{ }}{\left( {y{\rm{ }} + 1} \right)^2} + {\rm{ }}{\left( {z{\rm{ }}-{\rm{ }}5} \right)^2} = {\rm{ }}9\)        

b) Mặt cầu cần tìm có tâm \(C(3; -3; 1)\) và có bán kính \(R = CA = \sqrt {{{\left( {3 - 5} \right)}^2} + {{\left( { - 3 + 2} \right)}^2} + {{\left( {1 - 1} \right)}^2}}  = \sqrt 5 \)

Do đó phương trình mặt cầu có dạng: \({\left( {x{\rm{ }} - {\rm{ }}3} \right)^2} + {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}3} \right)^{2}} + {\rm{ }}{\left( {z{\rm{ }}-{\rm{ }}1} \right)^2} = {\rm{ }}5\).

loigiaihay.com

 

 

    

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan