Câu 6 trang 221 Sách bài tập Hình học 11 Nâng cao


Đề bài

Cho ba điểm A, B, C. Gọi ĐA, ĐB, ĐC là các phép đối xứng tâm có tâm lần lượt là A, B và C. Chứng minh rằng hợp thành của ba phép đối xứng tâm nói trên là một phép đối xứng tâm.

Lời giải chi tiết

 

Gọi F là phép hợp thành của ba phép đối xứng ĐA, ĐB và ĐC. Gọi M là điểm bất kì sao cho M1 = ĐA(M), M2 = ĐB(M1), M’ = ĐC(M2), có nghĩa là các điểm A, B, C lần lượt là trung điểm các đoạn \(M{M_1},{M_1}{M_2},{M_2}M'\)

Từ đó nếu ta gọi D là trung điểm của đoạn thẳng MM’ thì \(\overrightarrow {C{\rm{D}}}  = \overrightarrow {BA} \), tức D là điểm xác định không phụ thuộc vào M. Theo định nghĩa của phép hợp thành F thì F biến điểm M thành điểm M’. Vì D là trung điểm của MM’ nên F là phép đối xứng tâm với tâm là D.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

2k7 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập mễn phí

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.