Câu 6 trang 221 Sách bài tập Hình học 11 Nâng cao


Giải bài tập Câu 6 trang 221 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho ba điểm A, B, C. Gọi ĐA, ĐB, ĐC là các phép đối xứng tâm có tâm lần lượt là A, B và C. Chứng minh rằng hợp thành của ba phép đối xứng tâm nói trên là một phép đối xứng tâm.

Lời giải chi tiết

 

Gọi F là phép hợp thành của ba phép đối xứng ĐA, ĐB và ĐC. Gọi M là điểm bất kì sao cho M1 = ĐA(M), M2 = ĐB(M1), M’ = ĐC(M2), có nghĩa là các điểm A, B, C lần lượt là trung điểm các đoạn \(M{M_1},{M_1}{M_2},{M_2}M'\)

Từ đó nếu ta gọi D là trung điểm của đoạn thẳng MM’ thì \(\overrightarrow {C{\rm{D}}}  = \overrightarrow {BA} \), tức D là điểm xác định không phụ thuộc vào M. Theo định nghĩa của phép hợp thành F thì F biến điểm M thành điểm M’. Vì D là trung điểm của MM’ nên F là phép đối xứng tâm với tâm là D.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - ÔN TẬP CUỐI NĂM - HÌNH HỌC

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài