Bài 1.34 trang 17 SBT Giải tích 12 Nâng cao


Giải bài 1.34 trang 17 sách bài tập Giải tích 12 Nâng cao. Viết phương trình tiếp tuyến tại điểm I của đường cong...

Lựa chọn câu để xem lời giải nhanh hơn

Cũng câu hỏi như trong bài tập 1.33 đối với đường cong

\(y = {x^3} + 3{x^2} + 4x - 2\)

LG a

Viết phương trình tiếp tuyến tại điểm I của đường cong. Biết rằng hoành độ của I là nghiệm của phương trình y’’ = 0.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
y' = 3{x^2} + 6x + 4\\
y'' = 6x + 6\\
y'' = 0 \Leftrightarrow 6x + 6 = 0\\
\Leftrightarrow x = - 1 \Rightarrow y\left( { - 1} \right) = - 4\\
\Rightarrow I\left( { - 1; - 4} \right)
\end{array}\)

Hệ số góc của tiếp tuyến tại I là:

\(k = y'\left( { - 1} \right) = 3.{\left( { - 1} \right)^2} + 6.\left( { - 1} \right) + 4 = 1\)

Phương trình tiếp tuyến: \(y = 1\left( {x + 1} \right) - 4 \Leftrightarrow y = x - 3\)

Vậy điểm I (-1;-4); phương trình tiếp tuyến của đường cong  tại điểm I là y = x - 3.

LG b

Xét vị trí tương đối của đường cong (C) và tiếp tuyến tại điểm I của (C) (tức là xác định các khoảng trên đó (C) nằm phía trên hoặc phía dưới tiếp tuyến)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
{x^3} + 3{x^2} + 4x - 2 > x - 3\\
\Leftrightarrow {x^3} + 3{x^2} + 3x + 1 > 0\\
\Leftrightarrow {\left( {x + 1} \right)^3} > 0\\
\Leftrightarrow x + 1 > 0\\
\Leftrightarrow x > - 1
\end{array}\)

Do đó,

+) Trên khoảng \(\left( { - \infty ; - 1} \right)\) đường cong (C) nằm phía dưới tiếp tuyến

+) Trên khoảng \(\left( { - 1; + \infty } \right)\) đường cong (C) nằm phía trên tiếp tuyến.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài