Bài 94 trang 140 Sách bài tập Hình học lớp 12 Nâng cao


Cho hình lập phương ABCD.A’B’C’D’

Lựa chọn câu để xem lời giải nhanh hơn

Cho hình lập phương ABCD.ABCD cạnh bằng a. Xét hai điểm M trên AD’ và N trên DB sao cho  AM= DN= k (0< k <a\(\sqrt 2 \) ). Gọi P là trung điểm B’C’.

LG a

Tính cos của góc giữa hai đường thẳng AP và BC’.

Lời giải chi tiết:

Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA' (h.105).

Khi đó :

         \(\eqalign{  & A = \left( {0;0;0} \right)  \cr  & B = \left( {a;0;0} \right)  \cr  & D = \left( {0;a;0} \right)  \cr  & C = \left( {a;a;0} \right) \cr} \)  \(\eqalign{  & A' = \left( {0;0;a} \right)  \cr  & B' = \left( {a;0;a} \right)  \cr  & D' = \left( {0;a;a} \right)  \cr  & C' = \left( {a;a;a} \right) \cr} \)

          \(P = \left( {a;{a \over 2};a} \right)\)

Ta có \(\overrightarrow {AP}  = \left( {a;{a \over 2};a} \right)\)

                       \(\overrightarrow {BC'}  = \left( {0;a;a} \right).\)

Gọi \(\alpha \) là góc giữa hai đường thẳng \(AP\) và \(BC'\) ta có :

         \(\cos \alpha  = {{\left| {0 + {{{a^2}} \over 2} + {a^2}} \right|} \over {\sqrt {{a^2} + {{{a^2}} \over 2} + {a^2}} .\sqrt {{a^2} + {a^2}} }} = {1 \over {\sqrt 2 }} \Rightarrow \alpha  = {45^o}\)

LG b

Tính thể tích khối tứ diện APBC’.

Lời giải chi tiết:

Ta có : \(\overrightarrow {AP}  = \left( {a;{a \over 2};a} \right)\), \(\overrightarrow {AB}  = {\rm{ }}\left( {a;0;0} \right),\overrightarrow {AC'}  = (a;a;a)\)

\(\eqalign{  &  \Rightarrow \left[ {\overrightarrow {AP} ,\overrightarrow {AB} } \right] = \left( {\left| {\matrix{   {{a \over 2}} & a  \cr   0 & 0  \cr  } } \right|;\left| {\matrix{   a & a  \cr   0 & a  \cr  } } \right|;\left| {\matrix{   a & {{a \over 2}}  \cr   a & 0  \cr  } } \right|} \right) \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \left( {0;{a^2}; - {{{a^2}} \over 2}} \right)  \cr  &  \Rightarrow \left[ {\overrightarrow {AP} ,\overrightarrow {AB} } \right].\overrightarrow {AC'}  = 0 + {a^3} - {{{a^3}} \over 2} = {{{a^3}} \over 2}. \cr} \)

Vậy \({V_{APBC'}} = {1 \over 6}\left| {\left[ {\overrightarrow {AP} ,\overrightarrow {AB} } \right].\overrightarrow {AC'} } \right| = {1 \over 6}.{{{a^3}} \over 2} = {{{a^3}} \over {12}}.\) 

LG c

Chứng minh MN luôn song song với mặt phẳng (A’D’CB) khi k thay đổi.

Lời giải chi tiết:

Mặt phẳng \(\left( {A'D'CB} \right)\) song song với trục Oy nên có phương trình :

       \(px{\rm{ }} + {\rm{ }}qz{\rm{ }} + {\rm{ }}n{\rm{ }} = 0\) \(\left( {n \ne 0,{p^2} + {q^2} > 0} \right).\)

Vì mặt phẳng này đi qua \(A',B,C\) nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp\(\left( {A'D'CB} \right)\) là \(x + z - {\rm{ }}a = {\rm{ }}0\). Vectơ pháp tuyến của mặt phẳng này là \(\overrightarrow n  = {\rm{ }}\left( {1{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }}1} \right).\)

Từ giả thiết \(M \in AD',{\rm{ }}N \in DB;{\rm{ }}AM = {\rm{ }}DN = k\), ta tính được :

                      \(M = \left( {0;{k \over {\sqrt 2 }};{k \over {\sqrt 2 }}} \right),N = \left( {{k \over {\sqrt 2 }};{{a\sqrt {2 } -k} \over {\sqrt 2 }};0} \right).\)

Suy ra \(\overrightarrow {MN}  = \left( {{k \over {\sqrt 2 }};{{a\sqrt {2 } -2k} \over {\sqrt 2 }}; - {k \over {\sqrt 2 }}} \right).\)

Ta có \(\overrightarrow {MN} .\overrightarrow n  = 1.{k \over {\sqrt 2 }} + 0\left( {{{a\sqrt {2 }-2 k} \over {\sqrt 2 }}} \right) + 1.\left( { - {k \over {\sqrt 2 }}} \right) = 0\)

\(\Rightarrow \overrightarrow {MN}  \bot \overrightarrow n .\)

Rõ ràng \(N \notin mp\left( {A'D'CB} \right).\) Suy ra MN song song với mp\(\left( {A'D'CB} \right).\)

LG d

Tìm k để đoạn MN ngắn nhất.

Lời giải chi tiết:

Ta có \(M{N^2} = {\left( {{k \over {\sqrt 2 }}} \right)^2} + {\left( {{{a\sqrt {2 }-2 k} \over {\sqrt 2 }}} \right)^2} + {\left( { - {k \over {\sqrt 2 }}} \right)^2}.\)

\(\eqalign{  &  = 3{k^2} - 2a\sqrt 2 k + {a^2}  \cr  &  = 3\left[ {{{\left( {k - {{a\sqrt 2 } \over 3}} \right)}^2} + {{{a^2}} \over 9}} \right] \ge 3{{{a^2}} \over 9} = {{{a^2}} \over 3}. \cr} \)

\(M{N^2}\) nhỏ nhất bằng \({{{a^2}} \over 3}\) khi \(k = {{a\sqrt 2 } \over 3}\) (thoả mãn điều kiện \(0{\rm{ }} < k{\rm{ }} < {\rm{ }}a\sqrt 2 \) ).

Vậy MN ngắn nhất bằng \({{a\sqrt 3 } \over 3}\) khi \(k = {{a\sqrt 2 } \over 3}\).

LG e

Khi đoạn MN ngắn nhất, chứng minh rằng MN là đường vuông góc chung của AD’ và DB, đồng thời MN song song với A’C.

Lời giải chi tiết:

Khi MN ngắn nhất thì \(k = {{a\sqrt 2 } \over 3}\) Khi đó \(\overrightarrow {MN}  = \left( {{a \over 3};{a \over 3};{{ - a} \over 3}} \right).\)

Ta lại có \(\overrightarrow {AD'}  = {\rm{ }}\left( {0;a;{\rm{ }}a} \right),\overrightarrow {DB} {\rm{ }} = (a; - a;0)\) nên \(\overrightarrow {MN} .\overrightarrow {AD'}  = {\rm{ }}0,\overrightarrow {MN} .\overrightarrow {DB}  = {\rm{ }}0.\)

Vậy MN là đường vuông góc chung của AD' và DB.

Mặt khác \(\overrightarrow {A'C}  = \left( a;a; - a\right) = 3\overrightarrow {MN} \), chứng tỏ \(\overrightarrow {MN} \), \(\overrightarrow {A'C} \) cùng phương. Do \(N \not\in A'C\)  nên \(MN//A'C.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí