Bài 5 trang 10 SGK Giải tích 12


Giải bài 5 trang 10 SGK Giải tích 12. Chứng minh các bất đẳng thức sau:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh các bất đẳng thức sau:

\(\tan x>x\ \ \left( 0<x<\frac{\pi }{2} \right).\)

Phương pháp giải:

+) Chuyển vế tất cả các biểu thức chứa biến sang vế trái sau đó so sánh hàm số \(y\left( x \right)\) với 0.

+) Tính đạo hàm bậc nhất của hàm số \(y\left( x \right)\) và khảo sát hàm số \(y\left( x \right)\)  trên các khoảng đề bài đã cho.

+) Dựa vào tính đơn điệu của hàm số để kết luận bài toán.

Lời giải chi tiết:

\(\tan x>x\ \ \left( 0<x<\dfrac{\pi }{2} \right).\)

Xét hàm số: \(y=f\left( x \right)=\tan x-x\) với \(x\in \left( 0;\ \dfrac{\pi }{2} \right).\)

Ta có: \(y'=\dfrac{1}{{{\cos }^{2}}x}-1=\dfrac{1-{{\cos }^{2}}x}{{{\cos }^{2}}x}=\dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x}\) \(={{\tan }^{2}}x>0,\forall x\in \left( 0;\dfrac{\pi }{2} \right)\)

Vậy hàm số luôn đồng biến trên \(\left( 0;\dfrac{\pi }{2} \right).\)

\(\Rightarrow \forall \ x\in \left( 0;\dfrac{\pi }{2} \right) \text{ta có}  \, f\left( x \right)>f\left( 0 \right) \\ \Leftrightarrow \tan x-x>\tan 0-0 \\ \Leftrightarrow \tan x-x>0 \\ \Leftrightarrow \tan x>x\ \ \left( dpcm \right).\)

LG b

\(\tan x>x+\dfrac{{{x}^{3}}}{3}\ \ \left( 0<x<\frac{\pi }{2} \right).\)

Phương pháp giải:

+) Chuyển vế tất cả các biểu thức chứa biến sang vế trái sau đó so sánh hàm số \(y\left( x \right)\) với 0.

+) Tính đạo hàm bậc nhất của hàm số \(y\left( x \right)\) và khảo sát hàm số \(y\left( x \right)\)  trên các khoảng đề bài đã cho.

+) Dựa vào tính đơn điệu của hàm số để kết luận bài toán.

Lời giải chi tiết:

\(\tan x>x+\dfrac{{{x}^{3}}}{3}\ \ \left( 0<x<\dfrac{\pi }{2} \right).\)

Xét hàm số: \(y=g\left( x \right)=\tan x-x-\dfrac{{{x}^{3}}}{3}\) với \(x\in \left( 0;\ \dfrac{\pi }{2} \right).\)

Ta có: \(y'=\dfrac{1}{{{\cos }^{2}}x}-1-{{x}^{2}}=1+{{\tan }^{2}}x-1-{{x}^{2}}\\ ={{\tan }^{2}}x-{{x}^{2}}=\left( \tan x-x \right)\left( \tan x+x \right).\)

Với \(\forall \ x\in \left( 0;\dfrac{\pi }{2} \right)\Rightarrow \tan x>0\) nên ta có: \(\tan x+x>0\)  và \(\tan x-x>0\) (theo câu a) \(\Rightarrow y'>0\,\,\forall x\in \left( 0;\dfrac{\pi }{2} \right)\)

Vậy hàm số \(y=g\left( x \right)\) đồng biến trên \(\left( 0;\dfrac{\pi }{2} \right)\Rightarrow g\left( x \right)>g\left( 0 \right).\)

\(\Leftrightarrow \tan x-x-\dfrac{{{x}^{3}}}{3}>\tan 0-0-0 \\ \Leftrightarrow \tan x-x-\dfrac{{{x}^{3}}}{3}>0 \\ \Leftrightarrow \tan x>x+\dfrac{{{x}^{3}}}{3}\ \ \ \left( dpcm \right).\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.1 trên 48 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài