Bài 2 trang 10 SGK Giải tích 12


Giải bài 2 trang 10 SGK Giải tích 12. Tìm các khoảng đơn điệu của các hàm số:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các khoảng đơn điệu của các hàm số:

LG a

a) \(y=\dfrac{3x+1}{1-x}\) ;

Phương pháp giải:

+) Tìm tập xác định của hàm số.

+) Tính đạo hàm của hàm số. Tìm các điểm xi (I =1,2,3,…,n) mà tại đó đạo hàm bằng 0 hoặc không xác định

+) Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên

+) Dựa vào bảng biến thiên để kết luận khoảng đồng biến và nghịch biến của hàm số trên tập xác định của nó. (nếu y’ > 0 thì hàm số đồng biến, nếu y’ < 0 thì hàm số nghịch biến)

Ở bài toán này cần chú ý các tập xác định của hàm số.

Lời giải chi tiết:

\(y=\dfrac{3x+1}{1-x}=\dfrac{3x+1}{-x+1}\)        

Tập xác định: \(D=R\backslash \left\{ 1 \right\}.\)

Có: \(y'=\dfrac{3.1-(-1).1}{{{\left( -x+1 \right)}^{2}}}\)\(=\dfrac{4}{{{\left( -x+1 \right)}^{2}}}>0\ \forall \ x\in D.\)

Bảng biến thiên:

Vậy hàm số đồng biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ 1 \right)\) và \(\left( 1;+\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào BBT: \(\mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{3x + 1}}{{1 - x}} =  - 3,\) \(\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{3x + 1}}{{1 - x}} =  - \infty ,\) \(\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{3x + 1}}{{1 - x}} =  + \infty \)            

LG b

b) \(y=\dfrac{x^{2}-2x}{1-x}\) ;

Lời giải chi tiết:

\(y=\dfrac{{{x}^{2}}-2x}{1-x}.\)

Tập xác định: \(D=R\backslash \left\{ 1 \right\}.\)

Có: \(y'=\dfrac{\left( 2x-2 \right)\left( 1-x \right)+{{x}^{2}}-2x}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-{{x}^{2}}+2x-2}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-\left( {{x}^{2}}-2x+2 \right)}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-\left( {{x}^{2}}-2x+1 \right)-1}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-{{\left( x-1 \right)}^{2}}-1}{{{\left( 1-x \right)}^{2}}}\) \(=-1-\dfrac{1}{{{\left( 1-x \right)}^{2}}}<0\ \forall x\in D.\)

Bảng biến thiên:

Vậy hàm số nghịch biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ 1 \right)\) và \(\left( 1;+\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào bảng biến thiên:

\(\begin{align}& \underset{x\to +\infty }{\mathop{\lim }}\,\dfrac{{{x}^{2}}-2x}{1-x}=-\infty \cr& \underset{x\to -\infty }{\mathop{\lim }}\,\dfrac{{{x}^{2}}-2x}{1-x}=+\infty \  \\ & \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{3x+1}{1-x}=+\infty \cr&\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{3x+1}{1-x}=-\infty  \\ \end{align}\)

LG c

c) \(y=\sqrt{x^{2}-x-20}\) ;   

Lời giải chi tiết:

\(y=\sqrt{{{x}^{2}}-x-20}\)                     

Có \({{x}^{2}}-x-20\ge 0\) \(\Leftrightarrow \left( x+4 \right)\left( x-5 \right)\ge 0\) \(\Leftrightarrow \left[ \begin{align} & x\le -4 \\ & x\ge 5 \\ \end{align} \right..\)

Tập xác định: \(D=\left( -\infty ;-4 \right]\cup \left[ 5;+\infty  \right).\)

Có \(y'=\dfrac{2x-1}{2\sqrt{{{x}^{2}}-x-20}}\) \(\Rightarrow y'=0\Leftrightarrow 2x-1=0\)\(\Leftrightarrow x=\dfrac{1}{2}\notin D\)

Bảng biến thiên:

Vậy hàm số nghịch biến trên khoảng \(\left( -\infty ;-4 \right)\) và đồng biến trên khoảng \(\left( 5;+\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào BBT:

\(\begin{align}  & \underset{x\to -\infty }{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=+\infty\cr&\underset{x\to +\infty }{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=+\infty  \\  & \underset{x\to {{4}^{-}}}{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=0\cr& \underset{x\to {{5}^{+}}}{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=0.\  \\ \end{align}\)

LG d

d) \(y=\dfrac{2x}{x^{2}-9}\).

Lời giải chi tiết:

\(y=\dfrac{2x}{{{x}^{2}}-9}.\)

Có \({{x}^{2}}-9\ne 0\Leftrightarrow x\ne \pm 3.\)

Tập xác định:  \(D=R\backslash \left\{ \pm 3 \right\}.\)

Có: \(y'=\dfrac{2\left( {{x}^{2}}-9 \right)-2x.2x}{{{\left( {{x}^{2}}-9 \right)}^{2}}}\) \(=\dfrac{-2{{x}^{2}}-18}{{{\left( {{x}^{2}}-9 \right)}^{2}}}\) \(=\dfrac{-2\left( {{x}^{2}}+9 \right)}{{{\left( {{x}^{2}}-9 \right)}^{2}}}<0\ \forall \ x\in D.\)

Bảng biến thiên:

Vậy hàm số nghịch biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ -3 \right);\ \left( -3;\ 3 \right)\) và \(\left( 3;\ +\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào BBT:

\(\begin{align}& \underset{x\to -\infty }{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=0\cr&\underset{x\to +\infty }{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=0 \\ & \underset{x\to -{{3}^{+}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=+\infty \cr&\underset{x\to -{{3}^{-}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=-\infty  \\ & \underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=+\infty \cr& \underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=-\infty . \\ \end{align}\)

Loigiaihay.com


Bình chọn:
4.5 trên 86 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài