Bài 3 trang 10 SGK Giải tích 12


Giải bài 3 trang 10 SGK Giải tích 12. Chứng minh rằng

Đề bài

Chứng minh rằng hàm số \(y=\dfrac{x}{{{x}^{2}}+1}\) đồng biến trên khoảng \(\left( -1;\ 1 \right)\) và nghịch biến trên các khoảng \(\left( -\infty ;-1 \right)\) và \(\left( 1;+\infty  \right).\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Tìm tập xác định của hàm số.

+) Tính đạo hàm của hàm số. Tìm các điểm xi (i =1,2,3,…,n) mà tại đó đạo hàm bằng 0 hoặc không xác định

+) Xét dấu đạo hàm và kết luận khoảng đồng biến nghịch biến.

Lời giải chi tiết

Tập xác định: \(D=R.\)

Có: \(y'=\dfrac{{{x}^{2}}+1-2{{x}^{2}}}{{{\left( {{x}^{2}}+1 \right)}^{2}}}=\dfrac{1-{{x}^{2}}}{\left( {{x}^{2}}+1 \right)^2}\)

\(\Rightarrow y'=0\Leftrightarrow 1-{{x}^{2}}=0\Leftrightarrow \left[ \begin{align}& x=1 \\ & x=-1 \\ \end{align} \right..\)

Ta có: \(y' > 0 \Leftrightarrow 1 - {x^2} > 0 \) \(\Leftrightarrow  - 1 < x < 1\)

Do đó hàm số đồng biến trên khoảng \(\left( -1;\ 1 \right).\)

\(y' < 0 \Leftrightarrow 1 - {x^2} < 0\) \( \Leftrightarrow \left[ \begin{array}{l}x > 1\\x < - 1\end{array} \right.\)

Do đó hàm số nghịch biến trên khoảng \(\left( -\infty ;\ -1 \right)\) và \(\left( 1;+\infty  \right).\)

Loigiaihay.com


Bình chọn:
4.5 trên 64 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài