Tính đơn điệu của hàm số


Tính đơn điệu của hàm số, khảo sát sự biến thiên, tính đơn điệu của hàm số, điều kiện để hàm số đồng biến - nghịch biến

Định nghĩa

Hàm số \(f\) xác định trên \(K\). Với mọi \(x_1, x_2\) thuộc \(K\) mà \( x_1 > x_2\)

+) nếu \(f(x_1)>f(x_2)\) thì \(f\) tăng trên \(K\)

+) nếu \(f(x_1)<f(x_2)\) thì \(f\) giảm trên \(K\).

Chú ý:

- Hàm số tăng hoặc giảm trên \(K\) được gọi chung là hàm số đơn điệu trên \(K\).

- \(K\) có thể là một khoảng, một đoạn hoặc một nửa khoảng.

Điểu kiện cần đế hàm số đơn điệu

Cho hàm số \(f\) có đạo hàm trên khoảng \(K\)

- Nếu \(f\) tăng trên \(K\) thì f'(x)>0, với mọi \(x\) thuộc \(K\).

- Nếu \(f\) giảm trên \(K\) thì f'(x)< 0, với mọi \(x\) thuộc \(K\).

Điều kiện đủ để hàm số đơn điệu

Cho hàm sổ \(f\) có đạo hàm trên khoảng \(K\)

- Nếu f'(x) > 0 với mọi \(x\) thuộc \(K\) thì \(f\) tăng trên \(K\).

- Nếu f'(x) < 0 với mọi \(x\) thuộc \(K\) thì \(f\) giảim trên \(K\).

Chú ý: Nếu f'(x) ≥ 0 \(\forall x \in K\) (hoặc f’(x) ≤ 0, \(\forall x \in K\)) và f’(x) = 0 chỉ tại một số hữu hạn điểm thuộc \(K\) thì hàm số \(f\) tăng (hoặc giảm) trên \(K\).

Loigiaihay.com


Bình chọn:
2.8 trên 9 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài