Lý thuyết sự đồng biến, nghịch biến của hàm số


Kí hiệu K là một khoảng, một đoạn hoặc một nửa khoảng.

Lý thuyết sự đồng biến, nghịch biến của hàm số

Kí hiệu K là một khoảng, một đoạn hoặc một nửa khoảng.

1. Định nghĩa

Hàm số y = f(x) đồng biến (tăng) trên K ⇔ ∀x1, x∈ K, x< x2 thì f(x1) < f(x2).

Hàm số y = f(x) nghịch biến (giảm) trên K ⇔ ∀x1, x∈ K, x< xthì f(x1) > f(x2).

2. Điều kiện cần để hàm số đơn điệu

Cho hàm số f có đạo hàm trên K.

 - Nếu f đồng biến trên K thì f'(x) ≥ 0 với mọi x ∈ K.

 - Nếu f nghịch biến trên K thì f'(x) ≤ 0 với mọi x ∈ K.

3. Điều kiện đủ để hàm số đơn điệu

Cho hàm số f có đạo hàm trên K.

- Nếu f'(x) > 0 với mọi x ∈ K thì f đồng biến trên K.

- Nếu f'(x) < 0 với mọi x ∈ K thì f nghịch biến trên K.

- Nếu f'(x) = 0 với mọi x ∈ K thì f là hàm hằng trên K.

Định lý mở rộng

 - Nếu f'(x) ≥ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc K thì f đồng biến trên K.

 - Nếu f'(x) ≤ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc K thì f nghịch biến trên K.

4. Quy tắc xét tính đơn điệu của hàm số

 i) Tìm tập xác định

 ii) Tính đạo hàm f'(x). Tìm các điểm x(i= 1 , 2 ,..., n) mà tại đó đạo hàm bằng 0  hoặc không xác định.

 iii) Sắp xếp các điểm xtheo thứ tự tăng dần và lập bảng biến thiên.

 iv) Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Loigiaihay.com


Bình chọn:
4.6 trên 24 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài