Bài 28 trang 67 Vở bài tập toán 9 tập 2


Giải vbt Bài 28 trang 67 VBT toán 9 tập 2. Giải các phương trình sau...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\(\left( {3{x^2} - 5x + 1} \right)\left( {{x^2} - 4} \right) = 0\)

Phương pháp giải:

Đưa phương trình về dạng phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)

Lời giải chi tiết:

\(\left( {3{x^2} - 5x + 1} \right)\left( {{x^2} - 4} \right) = 0 \)\(\Leftrightarrow {3x^2} - 5x + 1 = 0\) hoặc \({x^2} - 4 = 0\)

 Giải phương trình \({3x^2} - 5x + 1 = 0\)

Ta có \(\Delta  = {\left( { - 5} \right)^2} - 4.3.1 = 13 > 0\) nên phương trình có hai nghiệm  \(\left[ \begin{array}{l}x = \dfrac{{5 + \sqrt {13} }}{6}\\x = \dfrac{{5 - \sqrt {13} }}{6}\end{array} \right.\)

Giải phương trình \({x^2} - 4 = 0 \Leftrightarrow {x^2} = 4 \)\(\Leftrightarrow \left[ \begin{array}{l}x = 2\\x =  - 2\end{array} \right.\)

Vậy phương trình đã cho có bốn nghiệm \(x = \dfrac{{5 + \sqrt {13} }}{6};\)\(x = \dfrac{{5 - \sqrt {13} }}{6};\)\(x = 2;x =  - 2.\)

LG b

\(\left( {2{x^2} + x - 4} \right)^2 - {\left( {2x - 1} \right)^2} = 0\)

Phương pháp giải:

Đưa phương trình về dạng phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)

Lời giải chi tiết:

\(\begin{array}{l}{\left( {2{x^2} + x - 4} \right)^2} - {\left( {2x - 1} \right)^2} = 0\\ \Leftrightarrow \left( {2{x^2} + x - 4 + 2x - 1} \right)\left( {2{x^2} + x - 4 - 2x + 1} \right) = 0\\ \Leftrightarrow \left( {2{x^2} + 3x - 5} \right)\left( {2{x^2} - x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}2{x^2} + 3x - 5 = 0\\2{x^2} - x - 3 = 0\end{array} \right.\end{array}\)

Phương trình \(2{x^2} + 3x - 5 = 0\) có \(a + b + c = 2 + 3 + \left( { - 5} \right) = 0\) nên có hai nghiệm \(x = 1;x = \dfrac{{ - 5}}{2}\)

Phương trình \(2{x^2} - x - 3 = 0\) có \(a - b + c = 2 - \left( { - 1} \right) + \left( { - 3} \right) = 0\) nên có hai nghiệm \(x =  - 1;x = \dfrac{3}{2}\)

Vậy phương trình đã cho có bốn nghiệm \(x = 1;x = \dfrac{{ - 5}}{2};x =  - 1;x = \dfrac{3}{2}.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài