Bài 26 trang 65 Vở bài tập toán 9 tập 2


Giải Bài 26 trang 65 VBT toán 9 tập 2. Giải các phương trình trùng phương...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình trùng phương:

LG a

\({x^4} - 5{x^2} + 4 = 0\)

Phương pháp giải:

Đặt \({x^2} = t\,\left( {t \ge 0} \right)\) rồi tìm nghiệm của phương trình thu được, từ đó suy ra nghiệm của phương trình đã cho. 

Lời giải chi tiết:

Đặt \({x^2} = t\,\left( {t \ge 0} \right)\) ta có phương trình \({t^2} - 5t + 4 = 0\)

Phương trình này có \(a + b + c = 1 + \left( { - 5} \right) + 4 = 0\) nên có hai nghiệm \({t_1} = 1;{t_2} = \dfrac{c}{a} = 4\left( {\,thỏa \,mãn} \right)\)

Với \(t = {t_1} = 1\) ta có \({x^2} = 1\). Vậy \(x =  \pm 1\)

Với \(t = {t_2} = 4\) ta có \({x^2} = 4\). Vậy \(x =  \pm 2\)

Phương trình đã cho có 4 nghiệm \(x = 1;x =  - 1;x = 2;x =  - 2\). 

LG b

\(2{x^4} - 3{x^2} - 2 = 0\)

Phương pháp giải:

Đặt \({x^2} = t\,\left( {t \ge 0} \right)\) rồi tìm nghiệm của phương trình thu được, từ đó suy ra nghiệm của phương trình đã cho. 

Lời giải chi tiết:

Đặt \({x^2} = t\,\left( {t \ge 0} \right)\) ta có phương trình \(2{t^2} - 3t - 2 = 0\) (*)

\(\Delta  = {\left( { - 3} \right)^2} - 4.2.\left( { - 2} \right) = 25 > 0\)\( \Rightarrow \sqrt \Delta   = 5\)

\({t_1} = \dfrac{{ - \left( { - 3} \right) + 5}}{4} = 2\left( \,nhận \right);\)\({t_2} = \dfrac{{ - \left( { - 3} \right) - 5}}{4} =  - \dfrac{1}{2}\left( \,loại \right)\)

Với \(t = {t_1} = 2,\) ta có \({x^2} = 2 \Rightarrow x =  \pm \sqrt 2 \)

Phương trình đã cho có hai nghiệm \(x = \sqrt 2 ;x =  - \sqrt 2 .\)

LG c

\(3{x^4} + 10{x^2} + 3 = 0\)

Phương pháp giải:

Đặt \({x^2} = t\,\left( {t \ge 0} \right)\) rồi tìm nghiệm của phương trình thu được, từ đó suy ra nghiệm của phương trình đã cho. 

Lời giải chi tiết:

Đặt \({x^2} = t\,\left( {t \ge 0} \right)\) ta có phương trình \(3{t^2} + 10t + 3 = 0\) (*)

\(\Delta ' = {5^2} - 3.3 = 16 > 0 \Rightarrow \sqrt {\Delta '}  = 4.\)

Phương trình (*) có hai nghiệm phân biệt \(\left[ \begin{array}{l}t = \dfrac{{ - 5 + 4}}{3} =  - \dfrac{1}{3}\left( \,loại \right)\\t = \dfrac{{ - 5 - 4}}{3} =  - 3\left( \,loại \right)\end{array} \right.\)

Vậy phương trình đã cho vô nghiệm

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 4 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài