Bài 20 trang 23 Vở bài tập toán 9 tập 2


Giải Bài 20 trang 23 VBT toán 9 tập 2. Xác định a và b để đồ thị hàm số y = ax + b...

Lựa chọn câu để xem lời giải nhanh hơn

Xác đinh a và b để đồ thị hàm số \(y = ax + b\) đi qua hai điểm A và B trong mỗi trường hợp sau:

LG a

A(2 ; 2) và B(-1 ; 3)           

Phương pháp giải:

Đường thẳng \(y = ax + b\) đi qua điểm \(M\left( {{x_0};{y_0}} \right) \Leftrightarrow a{x_0} + b = {y_0}\)

Từ gt ta suy ra hệ hai phương trình hai ẩn \(a;b\). Giải hệ phương trình ta tìm được \(a;b.\)

Lời giải chi tiết:

Đường thẳng \(y = ax + b\) đi qua hai điểm \(A\left( {2; - 2} \right)\) và \(B\left( { - 1;3} \right)\) khi và chỉ khi \(a\) và \(b\) thỏa mãn hệ sau:

\(\left\{ \begin{array}{l}2a + b =  - 2\\ - a + b = 3\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}3a =  - 5\\ - a + b = 3\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}a =  - \dfrac{5}{3}\\b = \dfrac{4}{3}\end{array} \right.\)

Vậy \(a =  - \dfrac{5}{3};b = \dfrac{4}{3}\) 

LG b

A(-4 ; -2) và B(2 ; 1)

Phương pháp giải:

Đường thẳng \(y = ax + b\) đi qua điểm \(M\left( {{x_0};{y_0}} \right) \Leftrightarrow a{x_0} + b = {y_0}\)

Từ gt ta suy ra hệ hai phương trình hai ẩn \(a;b\). Giải hệ phương trình ta tìm được \(a;b.\)

Lời giải chi tiết:

Đường thẳng \(y = ax + b\) đi qua hai điểm \(A\left( { - 4; - 2} \right)\) và \(B\left( {2;1} \right)\) khi và chỉ khi \(a\) và \(b\) thỏa mãn hệ sau:

\(\left\{ \begin{array}{l} - 4a + b =  - 2\\2a + b = 1\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l} - 6a =  - 3\\2a + b = 1\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{1}{2}\\b = 0\end{array} \right.\)

Vậy \(a = \dfrac{1}{2};b = 0\)

LG c

A(3 ; -1) và B(-3 ; 2)           

Phương pháp giải:

Đường thẳng \(y = ax + b\) đi qua điểm \(M\left( {{x_0};{y_0}} \right) \Leftrightarrow a{x_0} + b = {y_0}\)

Từ gt ta suy ra hệ hai phương trình hai ẩn \(a;b\). Giải hệ phương trình ta tìm được \(a;b.\)

Lời giải chi tiết:

Đường thẳng \(y = ax + b\) đi qua hai điểm \(A\left( {3; - 1} \right)\) và \(B\left( { - 3;2} \right)\) khi và chỉ khi \(a\) và \(b\) thỏa mãn hệ sau:

 \(\left\{ \begin{array}{l}3a + b =  - 1\\ - 3a + b = 2\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}3a + b =  - 1\\2b = 1\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}a =  - \dfrac{1}{2}\\b = \dfrac{1}{2}\end{array} \right.\)

Vậy \(a =  - \dfrac{1}{2};b = \dfrac{1}{2}\)

LG d

\(A\left( {\sqrt 3 \,;\,2} \right)\) và B(0 ; 2)  

Phương pháp giải:

Đường thẳng \(y = ax + b\) đi qua điểm \(M\left( {{x_0};{y_0}} \right) \Leftrightarrow a{x_0} + b = {y_0}\)

Từ gt ta suy ra hệ hai phương trình hai ẩn \(a;b\). Giải hệ phương trình ta tìm được \(a;b.\)

Lời giải chi tiết:

Đường thẳng \(y = ax + b\) đi qua hai điểm \(A\left( {\sqrt 3 ;2} \right)\) và \(B\left( {0;2} \right)\) khi và chỉ khi \(a\) và \(b\) thỏa mãn hệ sau \(\left\{ \begin{array}{l}\sqrt 3 a + b = 2\\0.a + b = 2\end{array} \right.\)

Giải hệ \(\left\{ \begin{array}{l}\sqrt 3 a + b = 2\\0.a + b = 2\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}b = 2\\\sqrt 3 .a + 2 = 2\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 2\end{array} \right.\) , ta được \(a = 0\) và \(b = 2\).

Vậy \(a = 0;b = 2\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.4 trên 5 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài