Bài 16 trang 20 Vở bài tập toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải Bài 16 trang 20 VBT toán 9 tập 2. Giải các hệ phương trình sau bằng phương pháp cộng đại số...

Đề bài

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{ \begin{array}{l}3x + y = 3\\2x - y = 7\end{array} \right.\)

b) \(\left\{ \begin{array}{l}2x + 5y = 8\\2x - 3y = 0\end{array} \right.\)

c) \(\left\{ \begin{array}{l}4x + 3y = 6\\2x + y = 4\end{array} \right.\)

d) \(\left\{\begin{array}{l}2x + 3y =  - 2\\3x - 2y =  - 3\end{array} \right.\)

e) \(\left\{ \begin{array}{l}0,3x + 0,5y = 3\\1,5x - 2y = 1,5\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp cộng đại số giải hệ phương trình  

Lời giải chi tiết

a) Cộng từng vế hai phương trình của hệ đã cho,  ta được \(5x = 10\). Do đó

 \(\left\{ \begin{array}{l}3x + y = 3\\2x - y = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5x = 10\\2x - y = 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2\\2.2 - y = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y =  - 3\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {2; - 3} \right)\)

b) Trừ từng vế hai phương trình của hệ đã cho, ta được \(8y = 8\). Do đó

\(\left\{ \begin{array}{l}2x + 5y = 8\\2x - 3y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}8y = 8\\2x - 3y = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 1\\2x - 3.1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\x = \dfrac{3}{2}\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{3}{2};1} \right)\)

c) Ta giải hệ phương trình bằng cách nhân hai vế của phương trình thứ hai với \(2\) rồi trừ từng vế của hai phương trình:

\(\left\{ \begin{array}{l}4x + 3y = 6\\2x + y = 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}4x + 3y = 6\\4x + 2y = 8\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}4x + 3y = 6\\y =  - 2\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}4x + 3\left( { - 2} \right) = 6\\y =  - 2\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 3\\y =  - 2\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {3; - 2} \right)\)

d) Ta giải hệ phương trình bằng cách nhân hai vế của phương trình thứ nhất với \(2,\) nhân hai vế của phương trình thứ hai với \(3\) rồi cộng từng vế hai phương trình:

\(\left\{ \begin{array}{l}2x + 3y =  - 2\\3x - 2y =  - 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}4x + 6y =  - 4\\9x - 6y =  - 9\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}13x =  - 13\\2x + 3y =  - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\y = 0\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( { - 1;0} \right)\)

e) Cách 1: Nhân hai vế của phương trình thứ nhất với \(5\) rồi trừ từng vế của hai phương trình:

\(\left\{ \begin{array}{l}0,3x + 0,5y = 3\\1,5x - 2y = 1,5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}1,5x + 2,5y = 15\\1,5x - 2y = 1,5\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}4,5y = 13,5\\1,5x - 2y = 1,5\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}y = 3\\1,5x - 2.3 = 1,5\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}y = 3\\1,5x = 7,5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 3\\x = 5\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {5;3} \right)\)

Cách 2: Nhân hai vế của phương trình thứ nhất với \(4\) rồi cộng từng vế của hai phương trình

\(\left\{ \begin{array}{l}0,3x + 0,5y = 3\\1,5x - 2y = 1,5\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}1,2x + 2y = 12\\1,5x - 2y = 1,5\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}2,7x = 13,5\\1,5x - 2y = 1,5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 5\\1,5.5 - 2.y = 1,5\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 5\\2y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = 3\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {5;3} \right)\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com