Bài 14 trang 18 Vở bài tập toán 9 Tập 2


Giải Bài 14 trang 18 VBT toán 9 Tập 2. Xác định các hệ số a và b, biết rằng hệ phương trình...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Xác định các hệ số a và b, biết rằng hệ phương trình

\(\left\{ \begin{array}{l}2x + by =  - 4\\bx - ay =  - 5\end{array} \right.\)

Có nghiệm là (1 ; -2)

Phương pháp giải:

Hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) nhận cặp số \(\left( {{x_0};{y_0}} \right)\) làm nghiệm khi \(\left\{ \begin{array}{l}a{x_0} + b{y_0} = c\\a'{x_0} + b'{y_0} = c'\end{array} \right.\) 

Lời giải chi tiết:

Hệ phương trình ẩn \(x\) và \(y\) đã cho có nghiệm \(\left( {1; - 2} \right)\) khi và chỉ khi \(\left\{ \begin{array}{l}2 + b\left( { - 2} \right) =  - 4\\b - a\left( { - 2} \right) =  - 5\end{array} \right.\)

Ta coi đây là một hệ phương trình bậc nhất hai ẩn là \(a\) và \(b\) và giải hệ phương trình này

\(\left\{ \begin{array}{l}2 + b\left( { - 2} \right) =  - 4\\b - a\left( { - 2} \right) =  - 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2b =  - 6\\b + 2a =  - 5\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 3\\3 + 2.a =  - 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 3\\a =  - 4\end{array} \right.\)

Trả lời: Vậy \(a =  - 4;b = 3.\)

LG b

Cũng hỏi như vậy, nếu hệ phương trình có nghiệm là \(\left( {\sqrt 2  - 1;\sqrt 2 } \right)\) 

Phương pháp giải:

Hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\) nhận cặp số \(\left( {{x_0};{y_0}} \right)\) làm nghiệm khi \(\left\{ \begin{array}{l}a{x_0} + b{y_0} = c\\a'{x_0} + b'{y_0} = c'\end{array} \right.\) 

Lời giải chi tiết:

Hệ phương trình ẩn \(x\) và \(y\) đã cho có nghiệm \(\left( {\sqrt 2  - 1;\sqrt 2 } \right)\) khi và chỉ khi \(\left\{ \begin{array}{l}2\left( {\sqrt 2  - 1} \right) + b\sqrt 2  =  - 4\\\left( {\sqrt 2  - 1} \right)b - a\sqrt 2  =  - 5\end{array} \right.\)

Ta coi đây là một hệ phương trình bậc nhất hai ẩn là \(a\) và \(b\) và giải hệ phương trình này

\(\left\{ \begin{array}{l}2\left( {\sqrt 2  - 1} \right) + b\sqrt 2  =  - 4\\\left( {\sqrt 2  - 1} \right)b - a\sqrt 2  =  - 5\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}b\sqrt 2  =  - 2 - 2\sqrt 2 \\\left( {\sqrt 2  - 1} \right)b - a\sqrt 2  =  - 5\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b =  - 2 - \sqrt 2 \\\left( {\sqrt 2  - 1} \right)\left( { - 2 - \sqrt 2 } \right) - a\sqrt 2  =  - 5\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}b =  - 2 - \sqrt 2 \\a\sqrt 2 = 5-\sqrt 2  \end{array} \right.\\\Leftrightarrow \left\{ \begin{array}{l}b =  - 2 - \sqrt 2 \\a = \dfrac{{5\sqrt 2  - 2}}{2}\end{array} \right.\)

Trả lời: Vậy \(a = \dfrac{{5\sqrt 2  - 2}}{2};b =  - 2 - \sqrt 2 .\) 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài