Bài 12 trang 15 Vở bài tập toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải Bài 12 trang 15 VBT toán 9 tập 2. Giải hệ phương trình trong mỗi trường hợp sau...

Đề bài

Giải hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\\left( {{a^2} + 1} \right)x + 6y = 2a\end{array} \right.\) trong mỗi trường hợp sau:

a) \(a = -1\)       

b) \(a = 0\)               

c) \(a = 1 \)

Phương pháp giải - Xem chi tiết

Thay \(a\) trong mỗi trường hợp

Giải hệ phương trình bằng phương pháp thế 

Lời giải chi tiết

a) Với \(a =  - 1,\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\2x + 6y =  - 2\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + 3y = 1\\x + 3y =  - 1\end{array} \right.\)

Từ đó, ta thấy ngay hệ phương trình vô nghiệm

b) Với \(a = 0,\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\x + 6y = 0\end{array} \right.\)

Từ phương trình thứ nhất ta có \(x = 1 - 3y\)

Thế \(x\) trong phương trình thứ hai bởi \(x = 1 - 3y\), ta được

\(1 - 3y + 6y = 0 \Leftrightarrow 3y =  - 1 \Leftrightarrow y =  - \dfrac{1}{3}\)

Từ đó \(x = 1 - 3.\left( { - \dfrac{1}{3}} \right) = 2\).

Vậy với \(a = 0,\) hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {2; - \dfrac{1}{3}} \right)\).

c) Với \(a = 1\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\2x + 6y = 2\end{array} \right.\)  hay \(\left\{ \begin{array}{l}x + 3y = 1\\x + 3y = 1\end{array} \right.\)

Từ đó dễ thấy hệ phương trình có vô số nghiệm. Hơn nữa, tập nghiệm của nó chính là nghiệm của phương trình \(x + 3y = 1.\)

Do \(x + 3y = 1 \Leftrightarrow x = 1 - 3y\) nên tập nghiệm của phương trình \(x + 3y = 1\) là \(S = \left\{ {\left( {1 - 3y;y} \right)|y \in \mathbb{R}} \right\}\)

Vậy với \(a = 1,\) hệ phương trình đã cho có vô số nghiệm \(\left( {x;y} \right)\) thỏa mãn \(\left\{ \begin{array}{l}x = 1 - 3y\\y \in \mathbb{R}\end{array} \right.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com