Bài 11 trang 15 Vở bài tập toán 9 tập 2


Giải Bài 11 trang 15 VBT toán 9 tập 2. Giải các hệ phương trình sau bằng phương pháp thế...

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình sau bằng phương pháp thế:

LG a

\(\left\{ \begin{array}{l}3x - 2y = 11\\4x - 5y = 3\end{array} \right.\)

Phương pháp giải:

Sử dụng phương pháp thế giải hệ phương trình 

Lời giải chi tiết:

Biểu diễn \(y\) theo \(x\) từ phương trình thứ nhất, ta được \(y = \dfrac{{3x - 11}}{2}\)

Thế \(y\) trong phương trình thứ hai bởi \(y = \dfrac{{3x - 11}}{2}\), ta có

\(4x - 5.\left( {\dfrac{{3x - 11}}{2}} \right) = 3 \\\Leftrightarrow 8x - 5\left( {3x - 11} \right) = 6 \Leftrightarrow x = 7\)

Vậy \(\left\{ \begin{array}{l}3x - 2y = 11\\4x - 5y = 3\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 7\\y = \dfrac{{3x - 11}}{2}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 7\\y = 5\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {7;5} \right)\)

LG b

\(\left\{ \begin{array}{l}\dfrac{x}{2} - \dfrac{y}{3} = 1\\5x - 8y = 3\end{array} \right.\) 

Phương pháp giải:

Sử dụng phương pháp thế giải hệ phương trình 

Lời giải chi tiết:

Biểu diễn \(x\) theo \(y\) từ phương trình thứ nhất ta được \(x = \dfrac{2}{3}y + 2\)

Thế \(x\) trong phương trình thứ hai bởi \(x = \dfrac{2}{3}y + 2\), ta có

\(5\left( {\dfrac{2}{3}y + 2} \right) - 8y = 3 \\\Leftrightarrow \dfrac{{10}}{3}y - 8y = 3 - 10 \Leftrightarrow y = \dfrac{3}{2}\)

Vậy \(\left\{ \begin{array}{l}\dfrac{x}{2} - \dfrac{y}{3} = 1\\5x - 8y = 3\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{3}{2}\\x = \dfrac{2}{3}y + 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = \dfrac{3}{2}\end{array} \right.\) 

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {3;\dfrac{3}{2}} \right)\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài