Bài 11 trang 15 Vở bài tập toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải Bài 11 trang 15 VBT toán 9 tập 2. Giải các hệ phương trình sau bằng phương pháp thế...

Đề bài

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\left\{ \begin{array}{l}3x - 2y = 11\\4x - 5y = 3\end{array} \right.\)

b) \(\left\{ \begin{array}{l}\dfrac{x}{2} - \dfrac{y}{3} = 1\\5x - 8y = 3\end{array} \right.\) 

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp thế giải hệ phương trình 

Lời giải chi tiết

a) Biểu diễn \(y\) theo \(x\) từ phương trình thứ nhất, ta được \(y = \dfrac{{3x - 11}}{2}\)

Thế \(y\) trong phương trình thứ hai bởi \(y = \dfrac{{3x - 11}}{2}\), ta có

\(4x - 5.\left( {\dfrac{{3x - 11}}{2}} \right) = 3 \\\Leftrightarrow 8x - 5\left( {3x - 11} \right) = 6 \Leftrightarrow x = 7\)

Vậy \(\left\{ \begin{array}{l}3x - 2y = 11\\4x - 5y = 3\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 7\\y = \dfrac{{3x - 11}}{2}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = 7\\y = 5\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {7;5} \right)\)

b) Biểu diễn \(x\) theo \(y\) từ phương trình thứ nhất ta được \(x = \dfrac{2}{3}y + 2\)

Thế \(x\) trong phương trình thứ hai bởi \(x = \dfrac{2}{3}y + 2\), ta có

\(5\left( {\dfrac{2}{3}y + 2} \right) - 8y = 3 \\\Leftrightarrow \dfrac{{10}}{3}y - 8y = 3 - 10 \Leftrightarrow y = \dfrac{3}{2}\)

Vậy \(\left\{ \begin{array}{l}\dfrac{x}{2} - \dfrac{y}{3} = 1\\5x - 8y = 3\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{3}{2}\\x = \dfrac{2}{3}y + 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = \dfrac{3}{2}\end{array} \right.\) 

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {3;\dfrac{3}{2}} \right)\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com