Bài 13 trang 16 Vở bài tập toán 9 tập 2

Bình chọn:
4.9 trên 7 phiếu

Giải Bài 13 trang 16 VBT toán 9 tập 2. Giải các hệ phương trình sau bằng phương pháp thế...

Đề bài

Giải các hệ phương trình sau bằng phương pháp thế:
a) \(\left\{ \begin{array}{l}x\sqrt 2  - y\sqrt 3  = 1\\x + y\sqrt 3  = \sqrt 2 \end{array} \right.\)     

b) \(\left\{ \begin{array}{l}x - y\sqrt 2  = \sqrt 5 \\x\sqrt 2  + y = 1 - \sqrt {10} \end{array} \right.\)

c) \(\left\{ \begin{array}{l}\left( {\sqrt 2  - 1} \right) - y = \sqrt 2 \\x + \left( {\sqrt 2  + 1} \right)y = 1\end{array} \right.\) 

Phương pháp giải - Xem chi tiết

Giải hệ phương trình bằng phương pháp thế 

Lời giải chi tiết

a) \(\left\{ \begin{array}{l}x\sqrt 2  - y\sqrt 3  = 1\\x + y\sqrt 3  = \sqrt 2 \end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}\left( {\sqrt 2  - y\sqrt 3 } \right)\sqrt 2  - y\sqrt 3  = 1\\x = \sqrt 2  - y\sqrt 3 \end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}2 - y\left( {\sqrt 6  + \sqrt 3 } \right) = 1\\x = \sqrt 2  - y\sqrt 3 \end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{{\sqrt 2  - 1}}{{\sqrt 3 }}\\x = \sqrt 2  - y\sqrt 3 \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{{\sqrt 6  - \sqrt 3 }}{3}\\x = 1\end{array} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {1;\dfrac{{\sqrt 6  - \sqrt 3 }}{3}} \right)\)

b) Cách 1: Biểu diễn \(x\) theo \(y\) từ phương trình thứ nhất.

\(\left\{ \begin{array}{l}x - 2\sqrt 2 y = \sqrt 5 \\x\sqrt 2  + y = 1 - \sqrt {10} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2\sqrt 2 y + \sqrt 5 \\x\sqrt 2  + y = 1 - \sqrt {10} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2\sqrt 2 y + \sqrt 5 \\\left( {2\sqrt 2 y + \sqrt 5 } \right)\sqrt 2  + y = 1 - \sqrt {10} \end{array} \right.\) 

\( \Leftrightarrow \left\{ \begin{array}{l}x = 2\sqrt 2 y + \sqrt 5 \\y = \dfrac{{1 - 2\sqrt {10} }}{5}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{2\sqrt 2  - 3\sqrt 5 }}{5}\\y = \dfrac{{1 - 2\sqrt {10} }}{5}\end{array} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2  - 3\sqrt 5 }}{5};\dfrac{{1 - 2\sqrt {10} }}{5}} \right)\)

Cách 2: Biểu diễn \(y\) theo \(x\) từ phương trình thứ hai.

\(\left\{ \begin{array}{l}x - 2\sqrt 2 y = \sqrt 5 \\x\sqrt 2  + y = 1 - \sqrt {10} \end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x - 2\sqrt 2 y = \sqrt 5 \\y =  - \sqrt 2 x + 1 - \sqrt {10} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x - 2\sqrt 2 \left( { - \sqrt 2 x + 1 - \sqrt {10} } \right) = \sqrt 5 \\y =  - \sqrt 2 x + 1 - \sqrt {10} \end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{2\sqrt 2  - 3\sqrt 3 }}{5}\\y =  - \sqrt 2 \left( {\dfrac{{2\sqrt 2  - 3\sqrt 3 }}{5}} \right) + 1 - \sqrt {10} \end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{2\sqrt 2  - 3\sqrt 3 }}{5}\\y = \dfrac{{1 - 2\sqrt {10} }}{5}\end{array} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2  - 3\sqrt 5 }}{5};\dfrac{{1 - 2\sqrt {10} }}{5}} \right)\)

c) Cách 1: Biểu diễn \(y\) theo \(x\) từ phương trình thứ nhất.

\(\left\{ \begin{array}{l}\left( {\sqrt 2  - 1} \right)x - y = \sqrt 2 \\x + \left( {\sqrt 2  + 1} \right)y = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}y = \left( {\sqrt 2  - 1} \right)x - \sqrt 2 \\x + \left( {\sqrt 2  + 1} \right)y = 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}y = \left( {\sqrt 2  - 1} \right)x - \sqrt 2 \\x + \left( {\sqrt 2  + 1} \right)\left[ {\left( {\sqrt 2  - 1} \right)x - \sqrt 2 } \right] = 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y = \left( {\sqrt 2  - 1} \right)x - \sqrt 2 \\2x = 3 + \sqrt 2 \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}y =  - \dfrac{1}{2}\\x = \dfrac{{3 + \sqrt 2 }}{2}\end{array} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{3 + \sqrt 2 }}{2}; - \dfrac{1}{2}} \right)\)

Cách 2: Biểu diễn \(x\) theo \(y\) từ phương trình thứ hai

\(\left\{ \begin{array}{l}\left( {\sqrt 2  - 1} \right)x - y = \sqrt 2 \\x + \left( {\sqrt 2  + 1} \right)y = 1\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}\left( {\sqrt 2  - 1} \right)x - y = \sqrt 2 \\x = 1 - \left( {\sqrt 2  + 1} \right)y\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left( {\sqrt 2  - 1} \right)\left[ {1 - \left( {\sqrt 2  + 1} \right)y} \right] - y = \sqrt 2 \\x = 1 - \left( {\sqrt 2  + 1} \right)y\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}y =  - \dfrac{1}{2}\\x = 1 - \left( {\sqrt 2  + 1} \right)y\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y =  - \dfrac{1}{2}\\x = \dfrac{{3 + \sqrt 2 }}{2}\end{array} \right.\)

Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{3 + \sqrt 2 }}{2}; - \dfrac{1}{2}} \right)\) 

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com