Phần câu hỏi bài 6 trang 28 Vở bài tập toán 9 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải phần câu hỏi bài 6 trang 28 VBT toán 9 tập 1. Biểu thức căn(9a^2b)...

Lựa chọn câu để xem lời giải nhanh hơn

Câu 11

Biểu thức \(\sqrt {9{a^2}b} \) với \(a < 0,\,\,b \ge 0\) được biến đổi thành

(A) \(9a\sqrt b \)                                 (B) \( - 9a\sqrt b \)

(C) \(3a\sqrt b \)                                 (D) \( - 3a\sqrt b \)

Phương pháp giải:

Sử dụng kiến thức: Với hai biểu thức A, B mà \(B \ge 0\) , ta có \(\sqrt {{A^2}B}  = \left| A \right|\sqrt B \), tức là

Nếu \(A \ge 0\) và \(B \ge 0\) thì  \(\sqrt {{A^2}B}  = A\sqrt B \);

Nếu \(A < 0\) và \(B \ge 0\) thì \(\sqrt {{A^2}B}  =  - A\sqrt B \)

Cách giải:

\(\sqrt {9{a^2}b} \)\( = \sqrt {{{\left( {3a} \right)}^2}b} \) \( = 3\left| a \right|\sqrt b \)

Vì \(a < 0,\,\,b \ge 0\) nên \(\sqrt {9{a^2}b} \)\( =  - 3a\sqrt b \)

Đáp án cần chọn là D.

Câu 12

Biến đổi biểu thức \(2\sqrt {{x^2}y}  + x\sqrt y \) với \(x < 0,\,\,y \ge 0\), ta được:

(A) \(3\sqrt {{x^2}y} \)                                   (B) \(\sqrt {5{x^2}y} \)

(C) \(\sqrt { - 3{x^2}y} \)                                (D) \(\sqrt {{x^2}y} \)

Phương pháp giải:

- Biến đổi các căn thức bậc hai trong tổng về các căn thức đồng dạng : Đưa biểu thức vào trong hoặc ra ngoài dấu căn.

- Thực hiện phép cộng.

Cách giải:

\(2\sqrt {{x^2}y}  + x\sqrt y \)\( = 2\left| x \right|\sqrt y  + x\sqrt y \) \( =  - 2x\sqrt y  + x\sqrt y \) \( =  - x\sqrt y  = \sqrt {{x^2}y} \) (vì \(x<0\))

Đáp án cần chọn là D.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com