Bài 28 trang 28 Vở bài tập toán 9 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài 28 trang 28 VBT toán 9 tập 1. So sánh: a) 3 căn3 và căn(12)...

Đề bài

So sánh

a) \(3\sqrt 3 \) và \(\sqrt {12} \)                       b) 7 và \(3\sqrt 5 \)

c) \(\dfrac{1}{3}\sqrt {51} \) và \(\dfrac{1}{5}\sqrt {150} \)   

d) \(\dfrac{1}{2}\sqrt 6 \) và \(6\sqrt {\dfrac{1}{2}} \)

Phương pháp giải - Xem chi tiết

- Đưa thừa số ra ngoài dấu căn và vận dụng kiến thức: Nếu \(0 < A < B\) thì \(A\sqrt C  < B\sqrt C \) với \(C > 0\) .

- Đưa thừa số vào trong dấu căn rồi so sánh các số trong dấu căn: Nếu \(0 < A < B\) thì \(\sqrt A  < \sqrt B \) .

Lời giải chi tiết

a) Biến đổi \(3\sqrt 3  = \sqrt {{3^2}.3}  = \sqrt {27} \)

Vì  \(27 > 12\) nên \(\sqrt {27}  > \sqrt {12} \)

Vậy \(3\sqrt 3  > \sqrt {12} \).

b) Biến đổi \(3\sqrt 5  = \sqrt {{3^2}.5}  = \sqrt {45} \)

Do \(7 = \sqrt {49} \) mà \(\sqrt {49}  > \sqrt {45} \) (do \(49 > 45\) ) nên \(7 > 3\sqrt 5 \).

c) Biến đổi  \(\dfrac{1}{3}\sqrt {51}  = \sqrt {\dfrac{1}{9} \cdot 51}  = \sqrt {\dfrac{{17}}{3}} \) và \(\dfrac{1}{5}\sqrt {150}  = \sqrt {\dfrac{1}{{25}} \cdot 150}  = \sqrt 6 \)

Ta có \(\dfrac{{17}}{3} < 6\) (vì \(\dfrac{{18}}{3} = 6\) ).

Vậy \(\dfrac{1}{3}\sqrt {51}  < \dfrac{1}{5}\sqrt {150} \).

d) Biến đổi

\(\dfrac{1}{2}\sqrt 6  = \sqrt {\dfrac{1}{4} \cdot 6}  = \sqrt {\dfrac{3}{2}} \)

 \(6\sqrt {\dfrac{1}{2}}  = \sqrt {36 \cdot \dfrac{1}{2}}  = \sqrt {18} \)

Ta có : \(\dfrac{3}{2} < 18\) nên \(\sqrt {\dfrac{3}{2}}  < \sqrt {18} \)

Vậy  \(\dfrac{1}{2}\sqrt 6  < 6\sqrt {\dfrac{1}{2}} \)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com