Giải Bài 68 trang 88 sách bài tập Toán 6 - Cánh diều


Đề bài

a)     Có tồn tại số tự nhiên n để n2 + n+ 2 chia hết cho 5 hay không?

b)    Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp.

Phương pháp giải - Xem chi tiết

Xét các trường hợp của n khi chia cho 5

Lời giải chi tiết

a)     + Nếu n chia hết cho 5 thì n2 + n+ 2 chia cho 5 dư 2 ( vì n và n2 chia hết cho 5; 2 chia cho 5 dư 2).

+ Nếu n chia cho 5 dư 1 thì n2 + n+ 2 chia cho 5 dư 4 ( vì n và n2 chia cho 5 đều dư 1; 2 chia cho 5 dư 2).

+ Nếu n chia cho 5 dư 2 thì n2 + n+ 2 chia cho 5 dư 3 ( vì n chia cho 5 dư 2; n2 chia cho 5 dư 4 ; 2 chia cho 5 dư 2)

+ Nếu n chia cho 5 dư 3 thì n2 + n+ 2 chia cho 5 dư 4 ( vì n chia cho 5 dư 3;  n2 chia cho 5 dư 4; 2 chia cho 5 dư 2)

+ Nếu n chia cho 5 dư 4 thì n2 + n+ 2 chia cho 5 dư 2 ( vì n chia cho 5 dư 4 ; n2 chia cho 5 dư 1; 2 chia cho 5 dư 2)

Vậy không tồn tại số tự nhiên n để n2 + n+ 2 chia hết cho 5

b)    n = a + (a+1) + (a+2) + (a+3) + (a+4) = 5a + 10 chia hết cho 5

n = b + (b+1) + (b+2) + (b+3) + (b+4) + (b+5) + (b+6) = 7b +21 chia hết cho 7

Nên n chia hết cho cả 5 và 7.

Mà n là số tự nhiên nhỏ nhất , n lớn hơn 0

Vậy n = 35


Bình chọn:
3.8 trên 8 phiếu