Bài 34 trang 110 Vở bài tập toán 9 tập 2


Đề bài

Cho \(ABCD\) là tứ giác nội tiếp đường tròn tâm \(M\), biết \(\widehat {DAB} = {80^0},\)\(\widehat {DAM} = {30^0},\)\(\widehat {BMC} = {70^0}\). Hãy tính số đo góc \(MAB;\)\( BCM;\)\( AMB ; DMC ; AMD ; MCD\) và \(BCD\). 

Phương pháp giải - Xem chi tiết

+ Sử dụng các định lý: “Trong tứ giác nội tiếp, tổng hai góc đối bằng \(180^\circ \)”; “Tổng ba góc trong tam giác bằng \(180^\circ \)”.

+ Sử dụng tính chất tam giác cân

Lời giải chi tiết

Nối tâm \(M\) của đường tròn với các đỉnh \(A,B,C,D.\)

Vì \(ABCD\) nội tiếp đường tròn ta có :

 \(\widehat {DAB} + \widehat {BCD} = 180^\circ \)\( \Leftrightarrow \widehat {BCD} = 180^\circ  - 80^\circ  = 100^\circ ;\)

\(\widehat {MAB} = \widehat {DAB} - \widehat {DAM}\)\( = 80^\circ  - 30^\circ  = 50^\circ .\)

+ Xét \(\Delta BMC\) cân vì \(MB = MC\)

Ta có \(\widehat {MBC} = \widehat {BCM}\)

\( \Rightarrow 2\widehat {BCM} = 180^\circ  - \widehat {BMC}\)\( = 180^\circ  - 70^\circ  = 110^\circ .\) Vậy \(\widehat {BCM} = 55^\circ .\)

+ Xét \(\Delta BMA\) cân vì \(MB = MA.\)

Ta có \(\widehat {MAB} = \widehat {ABM}\)\( \Rightarrow \widehat {AMB} = 180^\circ  - 2.\widehat {MAB}\)\( = 180^\circ  - 2.50^\circ  = 80^\circ \) .

Vậy \(\widehat {AMB} = 80^\circ .\)

+ Xét \(\Delta DMA\) cân vì \(MD = MA.\)

Ta có  \(\widehat {MAD} = \widehat {ADM}\)\( \Rightarrow \widehat {AMD} = 180^\circ  - 2.\widehat {ADM} \)\(= 180^\circ  - 60^\circ  = 120^\circ .\)

Vậy  \(\widehat {AMD} = 120^\circ .\)

Từ các kết quả trên ta có

\(\widehat {DMC} = 360^\circ  - \left( {\widehat {AMD} + \widehat {AMB} + \widehat {BMC}} \right) \)\(= 360^\circ  - \left( {120^\circ  + 80^\circ  + 70^\circ } \right) = 90^\circ \) 

Vậy  \(\widehat {DMC} = 90^\circ \) 

Xét \(\Delta DMC\) cân vì \(MD = MC.\) Ta có \(\widehat {MCD} = \widehat {CDM}\)

\( \Rightarrow 2\widehat {MCD} = 180^\circ  - \widehat {DMC} \)\(= 180^\circ  - 90^\circ  = 90^\circ \).

Vậy \(\widehat {MCD} = 45^\circ ,\widehat {BCD} = 100^\circ .\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.