Bài 3.39 trang 180 SBT giải tích 12


Giải bài 3.39 trang 180 sách bài tập giải tích 12. Diện tích của hình phẳng giới hạn bởi các đường...

Đề bài

Diện tích của hình phẳng giới hạn bởi các đường \(\displaystyle  {y_1} = {x^3};{y_2} = 4x\) bằng

A. \(\displaystyle  0\)                   B. \(\displaystyle  4\)

C. \(\displaystyle  8\)                   D. \(\displaystyle   - 8\)

Phương pháp giải - Xem chi tiết

- Giải phương trình hoành độ giao điểm tìm nghiệm.

- Tính diện tích theo công thức \(\displaystyle  S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Lời giải chi tiết

Ta có: \(\displaystyle  {x^3} = 4x \Leftrightarrow x\left( {{x^2} - 4} \right) = 0\) \(\displaystyle   \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 2\\x = 2\end{array} \right.\).

\(\displaystyle  S = \int\limits_{ - 2}^2 {\left| {{x^3} - 4x} \right|dx} \) \(\displaystyle   = \int\limits_{ - 2}^0 {\left| {{x^3} - 4x} \right|dx}  + \int\limits_0^2 {\left| {{x^3} - 4x} \right|dx} \) \(\displaystyle   = \int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx}  - \int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} \)

\(\displaystyle   = \left. {\left( {\frac{{{x^4}}}{4} - 2{x^2}} \right)} \right|_{ - 2}^0 - \left. {\left( {\frac{{{x^4}}}{4} - 2{x^2}} \right)} \right|_0^2\) \(\displaystyle   = 0 - \frac{{16}}{4} + 2.4 - \frac{{16}}{4} + 2.4 = 8\).

Chọn C.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài