Bài 3.24 trang 115 SBT hình học 12


Giải bài 3.24 trang 115 sách bài tập hình học 12. Tìm tập hợp các điểm cách đều hai mặt phẳng...

Đề bài

Tìm tập hợp các điểm cách đều hai mặt phẳng:

\((\alpha )\): 3x – y + 4z + 2 = 0

\((\beta )\): 3x – y + 4z + 8 = 0

Phương pháp giải - Xem chi tiết

Gọi tọa độ điểm \(M\left( {x;y;z} \right)\), sử dụng công thức tính khoảng cách suy ra mối quan hệ \(x,y,z\).

Từ đó suy ra mặt phẳng cần tìm.

Lời giải chi tiết

Xét điểm M(x; y; z). Ta có: M cách đều hai mặt phẳng \((\alpha )\) và \((\beta )\)

\( \Leftrightarrow d(M,(\alpha )) = d(M,(\beta ))\)

\( \Leftrightarrow \dfrac{{|3x - y + 4z + 2|}}{{\sqrt {9 + 1 + 16} }}\) \( = \dfrac{{|3x - y + 4z + 8|}}{{\sqrt {9 + 1 + 16} }}\)

\(\begin{array}{l}
\Leftrightarrow \left| {3x - y + 4z + 2} \right| = \left| {3x - y + 4z + 8} \right|\\
\Leftrightarrow \left[ \begin{array}{l}
3x - y + 4z + 2 = 3x - y + 4z + 8\\
3x - y + 4z + 2 = - \left( {3x - y + 4z + 8} \right)
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2 = 8\left( {vo\,li} \right)\\
6x - 2y + 8z + 10 = 0
\end{array} \right.\\
\Leftrightarrow 3x - y + 4z + 5 = 0
\end{array}\)

Vậy tập hợp điểm M là mặt phẳng \(3x - y + 4z + 5 = 0\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Phương trình mặt phẳng

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài