Bài 3.21 trang 114 SBT hình học 12


Đề bài

Lập phương trình mặt phẳng \((\alpha )\) đi qua hai điểm A(0; 1; 0) , B(2; 3; 1) và vuông góc với mặt phẳng \((\beta )\) : x + 2y – z = 0 .

Phương pháp giải - Xem chi tiết

Mặt phẳng đi qua hai điểm \(A,B\) và vuông góc \(\left( \beta  \right)\) thì có VTPT là \(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {{n_{\left( \beta  \right)}}} } \right]\)

Lời giải chi tiết

Mặt phẳng \((\alpha )\) đi qua hai điểm A, B và vuông góc với mặt phẳng \((\beta )\):

x + 2y – z = 0.

Vậy hai vecto có giá song song hoặc nằm trên \((\alpha )\) là \(\overrightarrow {AB}  = (2;2;1)\)  và \(\overrightarrow {{n_\beta }}  = (1;2; - 1)\)

Suy ra \((\alpha )\) có vecto pháp tuyến là:  \(\overrightarrow {{n_\alpha }} =\left[ {\overrightarrow {AB} ,\overrightarrow {{n_\beta  }} } \right] = ( - 4;3;2)\)

Vậy phương trình của \((\alpha )\) là: -4x + 3(y – 1) + 2z = 0 hay 4x – 3y – 2z + 3 = 0.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Phương trình mặt phẳng

  • Bài 3.22 trang 115 SBT hình học 12

    Giải bài 3.22 trang 115 sách bài tập hình học 12. Xác định các giá trị của A, B để hai mặt phẳng sau đây song song với nhau:

  • Bài 3.23 trang 115 SBT hình học 12

    Giải bài 3.23 trang 115 sách bài tập hình học 12. Tính khoảng cách từ điểm M(1; 2; 0) lần lượt đến các mặt phẳng sau:...

  • Bài 3.24 trang 115 SBT hình học 12

    Giải bài 3.24 trang 115 sách bài tập hình học 12. Tìm tập hợp các điểm cách đều hai mặt phẳng...

  • Bài 3.25 trang 115 SBT hình học 12

    Giải bài 3.25 trang 115 sách bài tập hình học 12. Cho hình lập phương ABCD. A’B’C’D’ có cạnh bằng 1. Dùng phương pháp tọa độ để:...

  • Bài 3.26 trang 115 SBT hình học 12

    Giải bài 3.26 trang 115 sách bài tập hình học 12. Lập phương trình của mặt phẳng đi qua điểm M(3; -1; -5) đồng thời vuông góc với hai mặt phẳng: ...

  • Bài 3.27 trang 115 SBT hình học 12

    Giải bài 3.27 trang 115 sách bài tập hình học 12. Cho điểm A(2; 3; 4). Hãy viết phương trình của mặt phẳng đi qua các hình chiếu của điểm A trên các trục tọa độ.

  • Bài 3.28 trang 115 SBT hình học 12

    Giải bài 3.28 trang 115 sách bài tập hình học 12. Xét vị trí tương đối của các cặp mặt phẳng cho bởi phương trình tổng quát sau đây:...

  • Bài 3.29 trang 115 SBT hình học 12

    Giải bài 3.29 trang 115 sách bài tập hình học 12. Viết phương trình của mặt phẳng đi qua điểm M(2; -1; 2), song song với trục Oy và vuông góc với mặt phẳng : 2x – y + 3z + 4 = 0

  • Bài 3.30 trang 115 SBT hình học 12

    Giải bài 3.30 trang 115 sách bài tập hình học 12. Lập phương trình của mặt phẳng đi qua điểm M(1; 2; 3) và cắt ba tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất.

  • Bài 3.20 trang 114 SBT hình học 12

    Giải bài 3.20 trang 114 sách bài tập hình học 12. Hãy viết phương trình mặt phẳng đi qua gốc tọa độ O(0; 0; 0) và song song với mặt phẳng: x + y + 2z – 7 = 0.

  • Bài 3.19 trang 114 SBT hình học 12

    Giải bài 3.19 trang 114 sách bài tập hình học 12. Cho tứ diện có các đỉnh là A(5; 1; 3), B(1; 6; 2), C(5; 0 ; 4), D(4; 0 ; 6)...

  • Bài 3.18 trang 114 SBT hình học 12

    Giải bài 3.18 trang 114 sách bài tập hình học 12. Viết phương trình mặt phẳng trung trực của đoạn thẳng AB với A(1; -2; 4), B(3; 6; 2).

  • Bài 3.17 trang 114 SBT hình học 12

    Giải bài 3.17 trang 114 sách bài tập hình học 12. Viết phương trình mặt phẳng trong các trường hợp sau:

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài