Bài 3.23 trang 115 SBT hình học 12


Giải bài 3.23 trang 115 sách bài tập hình học 12. Tính khoảng cách từ điểm M(1; 2; 0) lần lượt đến các mặt phẳng sau:...

Đề bài

Tính khoảng cách từ điểm M(1; 2; 0) lần lượt đến các mặt phẳng sau:

a) \((\alpha )\): x + 2y – 2z + 1 = 0

b) \((\beta )\): 3x + 4z + 25 = 0

c) \((\gamma )\): z + 5 = 0

Phương pháp giải - Xem chi tiết

Công thức tính khoảng cách từ một điểm đến mặt phẳng: \(d\left( {M,\left( P \right)} \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)

Lời giải chi tiết

a) \(d(M,(\alpha )) = \dfrac{{|1 + 4 + 1|}}{{\sqrt {1 + 4 + 4} }} = \dfrac{6}{3} = 2\)

b) \(d(M,(\beta )) = \dfrac{{|3 + 25|}}{{\sqrt {9 + 16} }} = \dfrac{{28}}{5}\)

c) \(d(M,(\gamma )) = \dfrac{{|5|}}{{\sqrt 1 }} = 5\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Phương trình mặt phẳng

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài