Bài 31 trang 77 Vở bài tập toán 9 tập 1


Giải bài 31 trang 77 VBT toán 9 tập 1. Cho hai hàm số bậc nhất y = (k+1)x +3 ...

Đề bài

Cho hai hàm số bậc nhất \(y = \left( {k + 1} \right)x + 3\) và \(y = \left( {3 - 2k} \right)x + 1\)

a) Với giá trị nào của k thì đồ thị của hai hàm số là hai đường thẳng song song ?

b) Với giá trị nào của k thì đồ thị của hai hàm số là hai đường thẳng cắt nhau ?

c) Hai đường thẳng nói trên có thể trùng nhau được không ? Vì sao ? 

Phương pháp giải - Xem chi tiết

Vận dụng kiến thức: Hai đường thẳng \(y = ax + b\,\,\left( {a \ne 0} \right)\) và \(y = a'x + b'\,\,\left( {a' \ne 0} \right)\)

- Cắt nhau khi \(a \ne a'\)

- Song song với nhau khi \(a = a'\) và \(b \ne b'\)

- Trùng nhau khi \(a = a'\) và \(b = b'\)

Lời giải chi tiết

\(y = \left( {k + 1} \right)x + 3\) là hàm số bậc nhất, do đó \(k + 1 \ne 0\) \( \Leftrightarrow k \ne -1\)

\(y = \left( {3 - 2k} \right)x + 1\) là hàm số bậc nhất, do đó \(3 - 2k \ne 0 \Leftrightarrow k \ne \dfrac{3}{2}\)

a) Hai đường thẳng đã cho có các tung độ gốc khác nhau \(\left( {1 \ne 3} \right)\), do đó chúng song song với nhau khi:

\(k + 1 = 3 - 2k \Leftrightarrow k = \dfrac{2}{3}\)

\(k = \dfrac{2}{3}\) thỏa mãn điều kiện khác \( - 1\) và khác \(\dfrac{3}{2}\) .

Vậy khi \(k = \dfrac{2}{3}\) thì hai đường thẳng đã cho song song với nhau.

b) Hai đường thẳng đã cho cắt nhau khi :

\(k + 1 \ne 3 - 2k \Leftrightarrow k \ne \dfrac{2}{3}\)

Kết hợp với điều kiện \(k \ne  - 1\) và \(k \ne \dfrac{3}{2}\) , ta có thể trả lời :

Khi \(k \ne  - 1,k \ne \dfrac{3}{2}\) và \(k \ne \dfrac{2}{3}\) thì hai đường thẳng đã cho song song với nhau.

c) Hai đường thẳng \(y = \left( {k + 1} \right)x + 3\) và \(y = \left( {3 - 2k} \right)x + 1\) không bao giờ trùng nhau vì tung độ gốc khác nhau \(\left( {1 \ne 3} \right)\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài