Bài 14 trang 14 Vở bài tập toán 8 tập 1>
Giải bài 14 trang 14 VBT toán 8 tập 1. Tính a) (a + b + c)^2...
Tính:
LG a
\({\left( {a + b + c} \right)^2}\);
Phương pháp giải:
Áp dụng bình phương của một tổng, bình phương của một hiệu.
\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
Giải chi tiết:
\(\eqalign{
& \,\,{\left( {a + b + c} \right)^2} = {\left[ {\left( {a + b} \right) + c} \right]^2} \cr
& = {\left( {a + b} \right)^2} + 2\left( {a + b} \right)c + {c^2} \cr
& = {a^2} + 2ab + {b^2} + 2ac + 2bc + {c^2} \cr
& = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ac \cr} \)
LG b
\({\left( {a + b - c} \right)^2}\);
Phương pháp giải:
Áp dụng bình phương của một tổng, bình phương của một hiệu.
\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
Giải chi tiết:
\(\eqalign{
& b)\,\,\,{\left( {a + b - c} \right)^2} = {\left[ {\left( {a + b} \right) - c} \right]^2} \cr
& = {\left( {a + b} \right)^2} - 2\left( {a + b} \right)c + {c^2} \cr& = {a^2} + 2ab + {b^2} - 2ac - 2bc + {c^2} \cr
& = {a^2} + {b^2} + {c^2} + 2ab - 2bc - 2ac \cr} \)
LG c
\({\left( {a - b - c} \right)^2}\).
Phương pháp giải:
Áp dụng bình phương của một tổng, bình phương của một hiệu.
\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)
\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
Giải chi tiết:
\(\eqalign{
& \,\,{\left( {a - b - c} \right)^2} = {\left[ {\left( {a - b} \right) - c} \right]^2} \cr
& = {\left( {a - b} \right)^2} - 2\left( {a - b} \right)c + {c^2} \cr
& = {a^2} - 2ab + {b^2} - 2ac + 2bc + {c^2} \cr
& = {a^2} + {b^2} + {c^2} - 2ab + 2bc - 2ac \cr} \)
Loigiaihay.com
- Bài 13 trang 13 Vở bài tập toán 8 tập 1
- Bài 12 trang 13 Vở bài tập toán 8 tập 1
- Bài 11 trang 13 Vở bài tập toán 8 tập 1
- Bài 10 trang 12 Vở bài tập toán 8 tập 1
- Phần câu hỏi bài 3 trang 11, 12 Vở bài tập toán 8 tập 1
>> Xem thêm