Bài 1.38 trang 21 SBT giải tích 12>
Giải bài 1.38 trang 21 sách bài tập giải tích 12. Cho số dương m. Hãy phân tích m thành tổng của hai số dương sao cho tích của chúng là lớn nhất.
Đề bài
Cho số dương \(m\). Hãy phân tích \(m\) thành tổng của hai số dương sao cho tích của chúng là lớn nhất.
Phương pháp giải - Xem chi tiết
- Gọi số thứ nhất là \(x\) suy ra số thứ \(2\) theo \(m\) và \(x\).
- Lập hàm số tình tích hai số.
- Tìm GTLN của hàm số trên và kết luận.
Lời giải chi tiết
Cho \(m > 0\). Đặt \(x\) là số thứ nhất \(\left( {0 < x < m} \right)\) và số thứ hai là \(m-x\).
Xét tích \(P\left( x \right) = x\left( {m-x} \right)\)
Ta có: \(P'\left( x \right) = - 2x + m\); \(P'(x) = 0 \Leftrightarrow x = \dfrac{m}{2}\)
Bảng biến thiên:
Từ đó ta có giá trị lớn nhất của tích hai số là: \(\mathop {\max }\limits_{(0;m)} P(x) = P\left( {\dfrac{m}{2}} \right) = \dfrac{{{m^2}}}{4}\)
Loigiaihay.com
- Bài 1.39 trang 21 SBT giải tích 12
- Bài 1.40 trang 21 SBT giải tích 12
- Bài 1.41 trang 21 SBT giải tích 12
- Bài 1.42 trang 22 SBT giải tích 12
- Bài 1.43 trang 22 SBT giải tích 12
>> Xem thêm