Bài 1.39 trang 21 SBT giải tích 12


Giải bài 1.39 trang 21 sách bài tập giải tích 12. Một chất điểm chuyển động theo quy luật...

Đề bài

Một chất điểm chuyển động theo quy luật \(s = 6{t^2}-{t^3}\). Tính thời điểm \(t\) (giây) tại đó vận tốc \(v\left( {m/s} \right)\) của chuyển động đạt giá trị lớn nhất.

Phương pháp giải - Xem chi tiết

- Tìm hàm số vận tốc \(v\left( t \right) = s'\left( t \right)\).

- Tìm GTLN của hàm số \(v\left( t \right)\) đạt được tại \(t\) và kết luận.

Lời giải chi tiết

\(s = 6{t^2} - {t^3},t > 0\)\( \Rightarrow v\left( t \right) = s'\left( t \right) = 12t - 3{t^2}\)

Ta có \(v'\left( t \right) = 12 - 6t\), \(v'\left( t \right) = 0 \Leftrightarrow t = 2\).

Hàm số \(v\left( t \right)\) đồng biến trên khoảng \(\left( {0;2} \right)\) và nghịch biến trên khoảng \((2; + \infty )\).

Do đó \(\max v\left( t \right) = v\left( 2 \right) = 12\left( {m/s} \right)\)

Vậy vận tốc đạt giá trị lớn nhất khi \(t = 2\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.6 trên 5 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài