Câu hỏi 6 trang 83 SGK Giải tích 12


Giải câu hỏi 6 trang 83 SGK Giải tích 12. Giải phương trình...

Đề bài

Giải phương trình: \({\log _{{1 \over 2}}}x + {({\log _2}x)^2} = 2\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Biến đổi các logarit về cùng cơ số \(2\).

Lời giải chi tiết

\(\begin{array}{l}{\log _{\dfrac{1}{2}}}x + {\left( {{{\log }_2}x} \right)^2} = 2\,\left( {DK:x > 0} \right)\\ \Leftrightarrow {\log _{{2^{ - 1}}}} + {\left( {{{\log }_2}x} \right)^2} = 2\\ \Leftrightarrow  - {\log _2}x + {\left( {{{\log }_2}x} \right)^2} = 2\\ \Leftrightarrow {\left( {{{\log }_2}x} \right)^2} - {\log _2}x - 2 = 0\end{array}\)

Đặt \(t = {\log _2}x\) phương trình trở thành:

\({t^2} - t - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t =  - 1\\t = 2\end{array} \right.\)

Với \(t =  - 1\) thì \({\log _2}x =  - 1 \Leftrightarrow x = {2^{ - 1}} = \dfrac{1}{2}\left( {TM} \right)\)

Với \(t = 2\) thì \({\log _2}x = 2 \Leftrightarrow x = {2^2} = 4\left( {TM} \right)\)

Vậy phương trình có tập nghiệm \(S = \left\{ {\dfrac{1}{2};4} \right\}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài