Bài 2 trang 84 SGK Giải tích 12


Giải bài 2 trang 84 SGK Giải tích 12. Giải các phương trình mũ:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình mũ:

LG a

a) \({3^{2x-1}} + {3^{2x}} =108\);

Phương pháp giải:

+) Sử dụng các công thức cơ bản của hàm lũy thừa, biến đổi phương trình về các dạng cơ bản sau đó giải phương trình.

+) Đưa phương trình về dạng: \({a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right).\)

+) Giải các phương trình bằng phương pháp đổi biến.

+) Khi đổi biến nhớ đặt điều kiện cho biến mới.

+) Giải phương trình tìm biến mới, đối chiếu với điều kiện đã đặt. Sau đó quay lại giải phương trình tìm ẩn x ban đầu.

Lời giải chi tiết:

\( \begin{array}{l}\;\;{3^{2x - 1}} + {3^{2x}} = 108\\\Leftrightarrow \dfrac{1}{3}{.3^{2x}} + {3^{2x}} = 108\\ \Leftrightarrow \dfrac{4}{3}{.3^{2x}} = 108\\\Leftrightarrow {3^{2x}} = 81\\\Leftrightarrow {3^{2x}} = {3^4}\\ \Leftrightarrow 2x = 4\\ \Leftrightarrow x = 2.\end{array}\)

Vậy phương trình có nghiệm \(x=2\).

LG b

b) \({2^{x + 1}} + {2^{x - 1}} + {2^x} = 28\);

Lời giải chi tiết:

\(\begin{array}{l}\;\;{2^{x + 1}} + {2^{x - 1}} + {2^x} = 28\\ \Leftrightarrow {2.2^x} + \dfrac{1}{2}{.2^x} + {2^x} = 28\\ \Leftrightarrow \dfrac{7}{2}{.2^x} = 28\\ \Leftrightarrow {2^x} = 8\\ \Leftrightarrow {2^x} = {2^3}\\\Leftrightarrow x = 3.\end{array}\)

Vậy phương trình có nghiệm  \(x = 3.\)

LG c

c) \({64^x}-{8^x}-56 =0\);

Lời giải chi tiết:

\(\begin{array}{l}c)\;\;{64^x} - {8^x} - 56 = 0\\\Leftrightarrow {\left( {{8^x}} \right)^2} - {8^x} - 56 = 0.\end{array}\)

Đặt \({8^x} = t\;\;\left( {t > 0} \right).\) Khi đó ta có:
\( \begin{array}{l}Pt \Leftrightarrow {t^2} - t - 56 = 0\\ \Leftrightarrow \left( {t - 8} \right)\left( {t + 7} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t - 8 = 0\\t + 7 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 8\;\;\left( {tm} \right)\\t = - 7\;\;\left( {ktm} \right)\end{array} \right..\\ \Rightarrow {8^x} = 8 \Leftrightarrow x = 1.\end{array}\)
Vậy phương trình có nghiệm \(x=1.\)

LG d

d) \({3.4^x}-{2.6^x} = {9^x}\).

Phương pháp giải:

Chia cả 2 vế của pt cho \(9^x>0\).

Lời giải chi tiết:

\(PT \Leftrightarrow {3.4^x} - {2.6^x} - {9^x} = 0\)

Chia cả 2 vế của pt cho \(9^x>0\) ta được:

\(\begin{array}{l}
3.\frac{{{4^x}}}{{{9^x}}} - 2.\frac{{{6^x}}}{{{9^x}}} - 1 = 0\\
\Leftrightarrow 3.{\left( {\frac{4}{9}} \right)^x} - 2.{\left( {\frac{6}{9}} \right)^x} - 1 = 0\\
\Leftrightarrow 3.{\left[ {{{\left( {\frac{2}{3}} \right)}^x}} \right]^2} - 2.{\left( {\frac{2}{3}} \right)^x} - 1 = 0
\end{array}\)

Đặt \({\left( {\dfrac{2}{3}} \right)^x} = t\;\;\left( {t > 0} \right).\) Khi đó ta có:
\( \begin{array}{l}pt \Leftrightarrow 3{t^2} - 2t - 1 = 0\\ \Leftrightarrow \left( {3t + 1} \right)\left( {t - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}3t + 1 = 0\\t - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = - \dfrac{1}{3}\;\;\left( {ktm} \right)\\t = 1\;\;\left( {tm} \right)\end{array} \right.\\\Rightarrow {\left( {\dfrac{2}{3}} \right)^x} = 1 \Leftrightarrow x = 0.\end{array}\)
Vậy phương trình có nghiệm \(x = 0.\)

 Loigiaihay.com


Bình chọn:
3.9 trên 28 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài