Bài 4 trang 85 SGK Giải tích 12

Bình chọn:
4.5 trên 15 phiếu

Giải bài 4 trang 85 SGK Giải tích 12. Giải các phương trình lôgarit:

Đề bài

Giải các phương trình lôgarit:

a)  \({1 \over 2}\log \left( {{x^2} + x - 5} \right) = \log 5{\rm{x}} + \log {1 \over {5{\rm{x}}}}\)

b)  \({1 \over 2}\log \left( {{x^2} - 4{\rm{x}} - 1} \right) = \log 8{\rm{x}} - \log 4{\rm{x}}\)

c)  \({\log _{\sqrt 2 }}x + 4{\log _{4{\rm{x}}}}x + {\log _8}x = 13\)

Phương pháp giải - Xem chi tiết

Các bước giải phương trình logarit:

+) Tìm điều kiện xác định.

+) Sử dụng các phương pháp tương ứng để giải phương trình (có các phương pháp: đưa về cùng cơ số, đặt ẩn phụ, mũ hóa….).

+) Giải phương trình để tìm ẩn và so sánh với điều kiện xác định rồi kết luận nghiệm của phương trình.

Bài toán này chủ yếu sử dụng phương pháp đưa về cùng cơ số:   \({\log _a}f\left( x \right) = {\log _a}g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) > 0\\g\left( x \right) > 0\\f\left( x \right) = g\left( x \right)\end{array} \right..\)

Lời giải chi tiết

a)  \(\frac{1}{2}\log \left( {{x^2} + x - 5} \right) = \log 5x + \log \frac{1}{{5x}}.\)

Điều kiện:  \(\left\{ \begin{array}{l}{x^2} + x - 5 > 0\\5x > 0\\\frac{1}{{5x}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x > \frac{{ - 1 + \sqrt {21} }}{2}\\x < \frac{{ - 1 - \sqrt {21} }}{2}\end{array} \right.\\x > 0\end{array} \right. \Leftrightarrow x > \frac{{ - 1 + \sqrt {21} }}{2} \approx 1,79.\)

 \(\begin{array}{l}Pt \Leftrightarrow \frac{1}{2}\log \left( {{x^2} + x - 5} \right) = \log \left( {5x.\frac{1}{{5x}}} \right)\\ \Leftrightarrow \frac{1}{2}\log \left( {{x^2} + x - 5} \right) = \log 1\\\Leftrightarrow \log \left( {{x^2} + x - 5} \right) = 0\\\Leftrightarrow {x^2} + x - 5 = {10^0}=1\\ \Leftrightarrow {x^2} + x - 6 = 0\\\Leftrightarrow \left( {x + 3} \right)\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 3 = 0\\x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 3\;\;\left( {ktm} \right)\\x = 2\;\;\left( {tm} \right)\end{array} \right..\end{array}\)

Vậy phương trình có nghiệm \(x=2\).

b)  \(\frac{1}{2}\log \left( {{x^2} - 4x - 1} \right) = \log 8x - \log 4x.\)

Điều kiện:  \(\left\{ \begin{array}{l}{x^2} - 4x - 1 > 0\\8x > 0\\4x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x > 2 + \sqrt 5 \\x < 2 - \sqrt 5 \end{array} \right.\\x > 0\end{array} \right. \Leftrightarrow x > 2 + \sqrt 5 .\)

 \(\begin{array}{l}Pt \Leftrightarrow \frac{1}{2}\log \left( {{x^2} - 4x - 1} \right) = \log \frac{{8x}}{{4x}}\\ \Leftrightarrow \log \sqrt {{x^2} - 4x - 1}  = \log 2\\ \Leftrightarrow \sqrt {{x^2} - 4x - 1}  = 2\\ \Leftrightarrow {x^2} - 4x - 1 = 4\\ \Leftrightarrow {x^2} - 4x - 5 = 0\\\Leftrightarrow \left( {x + 1} \right)\left( {x - 5} \right) = 0\\\Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\x - 5 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 1\;\;\left( {ktm} \right)\\x = 5\;\;\left( {tm} \right)\end{array} \right..\end{array}\)

Vậy phương trình có nghiệm \(x=5.\)

c)  \({\log _{\sqrt 2 }}x + 4{\log _4}x + {\log _8}x = 13.\)

Điều kiện:  \(x > 0.\)

 \(\begin{array}{l}Pt \Leftrightarrow {\log _{{2^{\frac{1}{2}}}}}x + 4{\log _{{2^2}}}x + {\log _{{2^3}}}x = 13\\\Leftrightarrow 2{\log _2}x + 4.\frac{1}{2}{\log _x}x + \frac{1}{3}{\log _2}x = 13\\\Leftrightarrow \frac{{13}}{3}{\log _2}x = 13\\\Leftrightarrow {\log _2}x = 3\\\Leftrightarrow x = {2^3} = 8\;\;\left( {tm} \right).\end{array}\)

Vậy phương trình có nghiệm \(x=8.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan