Bài 1 trang 84 SGK Giải tích 12

Bình chọn:
3.8 trên 26 phiếu

Giải bài 1 trang 84 SGK Giải tích 12. Giải các phương trình mũ

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình mũ:

LG a

a) \({\left( {0,3} \right)^{3x - 2}} = 1\);         

Phương pháp giải:

+) Sử dụng các công thức của hàm lũy thừa:  \({a^m}.{a^n} = {a^{m + n}};\;\;\frac{{{a^m}}}{{{a^n}}} = {a^{m - n}};\;\;{a^0} = 1.\)

+) Đưa phương trình về dạng:  \({a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\;\left( * \right)\) sau đó giải phương trình (*) tìm nghiệm của phương trình rồi kết luận nghiệm.

Lời giải chi tiết:

\(\, \, \, {\left( {0,3} \right)^{3x - 2}} = 1 \\ \Leftrightarrow {\left( {0,3} \right)^{3x - 2}}= {\left( {0,3} \right)^0}\\ \Leftrightarrow 3x - 2=0 \\ ⇔ x = \dfrac{2}{3}.\)

Vậy phương trình có nghiệm: \(x = \dfrac{2}{3}. \)

LG b

b) \(\left ( \frac{1}{5} \right )^{x}= 25\);

Phương pháp giải:

+) Sử dụng các công thức của hàm lũy thừa:  \({a^m}.{a^n} = {a^{m + n}};\;\;\frac{{{a^m}}}{{{a^n}}} = {a^{m - n}};\;\;{a^0} = 1.\)

+) Đưa phương trình về dạng:  \({a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\;\left( * \right)\) sau đó giải phương trình (*) tìm nghiệm của phương trình rồi kết luận nghiệm.

Lời giải chi tiết:

\(\, \,  \left ( \dfrac{1}{5} \right )^{x}= 25 ⇔{5^{ - x}} = {5^2} \Leftrightarrow x =  - 2\).

Vậy phương trình có nghiệm \(x=-2.\)

LG c

c) \(2^{x^{2}-3x+2}= 4\);

Phương pháp giải:

+) Sử dụng các công thức của hàm lũy thừa:  \({a^m}.{a^n} = {a^{m + n}};\;\;\frac{{{a^m}}}{{{a^n}}} = {a^{m - n}};\;\;{a^0} = 1.\)

+) Đưa phương trình về dạng:  \({a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\;\left( * \right)\) sau đó giải phương trình (*) tìm nghiệm của phương trình rồi kết luận nghiệm.

Lời giải chi tiết:

\(\, \, \,  2^{x^{2}-3x+2} = 4  \\  \Leftrightarrow 2^{x^{2}-3x+2} = 2^2⇔ {x^2} - 3x +2=2 \\\Leftrightarrow x^2-3x=0 \\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 3\end{array} \right..\)

Vậy phương trình có nghiệm \(x=0\) hoặc \(x=3.\)

LG d

d) \({\left( {0,5} \right)^{x + 7}}.{\left( {0,5} \right)^{1 - 2x}} = 2\).

Phương pháp giải:

+) Sử dụng các công thức của hàm lũy thừa:  \({a^m}.{a^n} = {a^{m + n}};\;\;\frac{{{a^m}}}{{{a^n}}} = {a^{m - n}};\;\;{a^0} = 1.\)

+) Đưa phương trình về dạng:  \({a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\;\left( * \right)\) sau đó giải phương trình (*) tìm nghiệm của phương trình rồi kết luận nghiệm.

Lời giải chi tiết:

\( \, \, \, {\left( {0,5} \right)^{x + 7}}.{\left( {0,5} \right)^{1 - 2x}} = 2 \\  ⇔ \left ( \dfrac{1}{2} \right )^{x+7+1-2x}= 2  \\ \Leftrightarrow \left ( \dfrac{1}{2} \right )^{-x+8}= 2 \\ ⇔ 2^{x - 8} = 2^{1}  \\ \Leftrightarrow x - 8 = 1 \\  \Leftrightarrow x = 9.\)

Vậy phương trình có nghiệm \(x=9.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.

Góp ý Loigiaihay.com, nhận quà liền tay