Câu hỏi 2 trang 57 SGK Giải tích 12


Giải câu hỏi 2 trang 57 SGK Giải tích 12. Tính đạo hàm của các hàm số...

Đề bài

Tính đạo hàm của các hàm số: \(y = {x^{{{ - 2} \over 3}}};\,\,y = {x^\pi };\,\,y = {x^{\sqrt 2 }}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng công thức đạo hàm \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha  - 1}}\)

Lời giải chi tiết

\(\eqalign{
& y' = ({x^{{{ - 2} \over 3}}})' = - {2 \over 3}.{x^{({{ - 2} \over 3} - 1)}} \cr &= {{ - 2} \over 3}.{x^{{{ - 5} \over 3}}} \cr
& y' = ({x^\pi })' = \pi .{x^{\pi - 1}} \cr
& y' = ({x^{\sqrt 2 }})' = \sqrt 2 .{x^{\sqrt 2 - 1}} \cr} \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2. Hàm số lũy thừa

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài