Bài 4 trang 61 SGK Giải tích 12

Bình chọn:
4 trên 4 phiếu

Giải bài 4 trang 61 SGK Giải tích 12. Hãy so sánh các số sau với 1

Đề bài

Hãy so sánh các số sau với \(1\):

a) \(\left ( 4,1 \right )^{2,7}\);              b) \(\left ( 0,2 \right )^{0,3}\);

c) \(\left ( 0,7 \right )^{3,2}\);              d) \(\left ( \sqrt{3} \right )^{0,4}\).

Phương pháp giải - Xem chi tiết

Sử dụng phương pháp so sánh hai lũy thừa cùng cơ số:

\({a^{f\left( x \right)}} < {a^{g\left( x \right)}} \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\f\left( x \right) < g\left( x \right)\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\f\left( x \right) > g\left( x \right)\end{array} \right.\end{array} \right.\)

Lời giải chi tiết

a) Ta có: \(1 = {\left( {4,1} \right)^0}\)

Vì \(\left\{ \matrix{  4,1 > 1 \hfill \cr   2,7 > 0 \hfill \cr}  \right. \Rightarrow {\left( {4,1} \right)^{2,7}} > {\left( {4,1} \right)^0} = 1\)

b) Ta có: \(1 = {\left( {0,2} \right)^0}\)

Vì \(\left\{ \matrix{  0,2 < 1 \hfill \cr   0,3 > 0 \hfill \cr}  \right. \Rightarrow {\left( {0,2} \right)^{0,3}} < {\left( {0,2} \right)^0} = 1\)

c) Ta có: \(1 = {\left( {0,7} \right)^0}\)

Vì \(\left\{ \matrix{  0,7 < 1 \hfill \cr   3,2 > 0 \hfill \cr}  \right. \Rightarrow {\left( {0,7} \right)^{3,2}} < {\left( {0,7} \right)^0} = 1\)

d) Ta có: \(1 = {\left( {\sqrt 3 } \right)^0}\)

Vì \(\left\{ \matrix{  \sqrt 3  > 1 \hfill \cr   0,4 > 0 \hfill \cr}  \right. \Rightarrow {\left( {\sqrt 3 } \right)^{0,4}} > {\left( {\sqrt 3 } \right)^0} = 1\)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Bài 2. Hàm số lũy thừa

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu