Bài 1 trang 60 SGK Giải tích 12

Bình chọn:
4.5 trên 11 phiếu

Giải bài 1 trang 60 SGK Giải tích 12. Tìm tập xác định của các hàm số:

Đề bài

Tìm tập xác định của các hàm số:

a) y= \(\left ( 1-x \right )^{\frac{-1}{3}}\);                b) y= \(\left ( 2-x^{2} \right )^{\frac{3}{5}}\);

c) y= \(\left ( x^{2}-1 \right )^{-2}\);              d) y= \(\left ( x^{2}-x-2\right )^{\sqrt{2}}\).

Phương pháp giải - Xem chi tiết

Tập xác định của hàm số lũy thừa \(y = {x^n}\) tùy thuộc vào giá trị của \(n\):

Với \(n\) là số nguyên dương, tập xác định là R.

Với \(n\) là số nguyên âm hoặc bằng 0, tập xác định là \(R\backslash \left\{ 0 \right\}\).

Với \(n\) không nguyên, tập xác định là \(\left( {0; + \infty } \right)\)

Lời giải chi tiết

a) \(y= \left ( 1-x \right )^{\frac{-1}{3}}\) có \(n =  - \frac{1}{3} \notin Z\) xác định khi và chỉ khi \(1-x > 0 ⇔ x< 1\). 

Vậy \(D=(-∞; 1)\).

b) \(y= \left ( 2-x^{2} \right )^{\frac{3}{5}}\) có \(n = \frac{3}{5} \notin Z\) xác định khi và chỉ khi \(2-x^2> 0 ⇔ -\sqrt{2} < x <\) \(\sqrt{2}\).

Vậy \(D= \left( {-\sqrt{2}}; {\sqrt{2}}\right)\).

c) \(y= \left ( x^{2}-1 \right )^{-2}\) có \(n =  - 2 \in {Z^ - }\) xác định khi và chỉ khi \(x^2-1\ne 0 ⇔ x \ne ± 1\).

Vậy  \(D=\mathbb R {\rm{\backslash }} {\rm{\{  - 1;1\} }}\) .

d) \(y= \left ( x^{2}-x-2\right )^{\sqrt{2}}\) có \(n = \sqrt 2  \notin Z\) xác định khi và chỉ khi \({x^2} - x - 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < - 1\end{array} \right.\)

Vậy \(D=(-∞;-1) ∪ (2; +∞)\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan