Bài 1 trang 60 SGK Giải tích 12

Bình chọn:
4.1 trên 13 phiếu

Giải bài 1 trang 60 SGK Giải tích 12. Tìm tập xác định của các hàm số:

Đề bài

Tìm tập xác định của các hàm số:

a) y= \(\left ( 1-x \right )^{\frac{-1}{3}}\);                b) y= \(\left ( 2-x^{2} \right )^{\frac{3}{5}}\);

c) y= \(\left ( x^{2}-1 \right )^{-2}\);              d) y= \(\left ( x^{2}-x-2\right )^{\sqrt{2}}\).

Phương pháp giải - Xem chi tiết

Tập xác định của hàm số lũy thừa \(y = {x^n}\) tùy thuộc vào giá trị của \(n\):

Với \(n\) là số nguyên dương, tập xác định là R.

Với \(n\) là số nguyên âm hoặc bằng 0, tập xác định là \(R\backslash \left\{ 0 \right\}\).

Với \(n\) không nguyên, tập xác định là \(\left( {0; + \infty } \right)\)

Lời giải chi tiết

a) \(y= \left ( 1-x \right )^{\frac{-1}{3}}\) có \(n =  - \frac{1}{3} \notin Z\) xác định khi và chỉ khi \(1-x > 0 ⇔ x< 1\). 

Vậy \(D=(-∞; 1)\).

b) \(y= \left ( 2-x^{2} \right )^{\frac{3}{5}}\) có \(n = \frac{3}{5} \notin Z\) xác định khi và chỉ khi \(2-x^2> 0 ⇔ -\sqrt{2} < x <\) \(\sqrt{2}\).

Vậy \(D= \left( {-\sqrt{2}}; {\sqrt{2}}\right)\).

c) \(y= \left ( x^{2}-1 \right )^{-2}\) có \(n =  - 2 \in {Z^ - }\) xác định khi và chỉ khi \(x^2-1\ne 0 ⇔ x \ne ± 1\).

Vậy  \(D=\mathbb R {\rm{\backslash }} {\rm{\{  - 1;1\} }}\) .

d) \(y= \left ( x^{2}-x-2\right )^{\sqrt{2}}\) có \(n = \sqrt 2  \notin Z\) xác định khi và chỉ khi \({x^2} - x - 2 > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < - 1\end{array} \right.\)

Vậy \(D=(-∞;-1) ∪ (2; +∞)\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Bài 2. Hàm số lũy thừa

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu