Bài 67 trang 16 SBT Hình học 11 Nâng cao


Giải bài 67 trang 16 sách bài tập Hình học 11 Nâng cao. Cho Đ là phép đối xứng trục có trục đối xứng là đường thẳng d và T là phép tịnh tiến theo vectơ...

Lựa chọn câu để xem lời giải nhanh hơn

Cho Đ là phép đối xứng trục có trục đối xứng là đường thẳng d và T là phép tịnh tiến theo vectơ \(\overrightarrow v \) song song với d. Hợp thành Đ và T gọi là phép đối xứng trượt. Phép đối xứng trục là một trường hợp đặc biệt của phép đối xứng trượt khi vectơ trượt là vectơ không.

LG a

Chứng minh rằng hợp thành của T và Đ cũng bằng hợp thành của Đ và T.

Lời giải chi tiết:

Giả sử M là một điêmt nào đó, Đ biến M thành M1 và T biến M1 thành M’.

Như vậy, nếu gọi F là hợp thành của T và Đ thì F biến M thành M’.

Nếu ta lấy điểm M2 sao cho MM1M’M2 là hình chữ nhật thì rõ ràng T biến M thành M2 và Đ biến M2 thành M’.

Vậy F cũng là hợp thành của T và Đ.

LG b

Chứng minh rằng nếu M’ là ảnh của M qua phép đối xứng trượt thì trung điểm đoạn thẳng MM’ luôn nằm trên trục của phép đối xứng trượt đó.

Lời giải chi tiết:

Hiển nhiên

LG c

Hợp thành của hai phép đối xứng trượt  có trục song song là phép gì?

Lời giải chi tiết:

Giả sử phép đối xứng trượt F có trục d và vectơ trượt \(\overrightarrow v \) , phép đối xứng trượt F’ có trục đối xứng d’ và véc tơ trượt \(\overrightarrow v '\) .

Kí hiệu Đ, Đ’ lần lượt là phép đối xứng có trục d và d’, T và T’ lần lượt là các phép tịnh tiến theo vectơ \(\overrightarrow v \) và \(\overrightarrow {v'} \) .

Như vậy F là hợp thành của T và Đ, F’ là hợp thành của Đ’ và T’.

Suy ra hợp thành của F và F’ là hợp thành của bốn phép: T, Đ, Đ’ và T’.

Vì d // d’ nên hợp thành của Đ và Đ’ là một phép tịnh tiến.

Vậy hợp thành F và F’ là hợp thành của ba phép tịnh tiến và do đó là môt phép tịnh tiến.

LG d

Chứng minh rằng hợp thành của một phép đối xứng trục và một phép tịnh tiến là một phép đối xứng trượt.

Lời giải chi tiết:

Gọi Đ là phép đối xứng trục, với trục là đường thẳng d, T là phép tịnh tiến theo vectơ \(\overrightarrow v \) , còn F là hợp thành của Đ và T.

Ta có thể tìm được hai vectơ \(\overrightarrow {{v_1}} \) và \(\overrightarrow {{v_2}} \) sao cho \(\overrightarrow {{v_1}} \) song song với d, \(\overrightarrow {{v_2}} \) vuông góc với d và \(\overrightarrow v  = \overrightarrow {{v_1}}  + \overrightarrow {{v_2}} \) .

Nếu ta gọi T1 và T2 lần lượt là các phép tịnh tiến theo các vectơ \(\overrightarrow {{v_1}} \) và \(\overrightarrow {{v_2}} \) thì T là hợp thành của T2 và T1.

Nhưng vì \(\overrightarrow {{v_2}} \) vuông góc với d nên T2 có thể xem là hợp thành của hai phép đối xứng trục D1 và D2 có trục song song với d. Tóm lại, F là hợp thành của bốn phép Đ, Đ1, Đ2 và T1.

Như đã biết, hợp thành của 3 phép đối xứng trục Đ, Đ1, Đ2 (có trục song song) là phép đối xứng của trục Đ3 có trục song song với d. Vậy F là hợp thành của Đ3 và T1 với vectơ tịnh tiến của T1 song song với trục đối xứng Đ3, nên F là phép đối xứng trượt.

LG e

Chứng minh rằng hợp thành của một phép quay và một phép đối xứng trục là một phép đối xứng trượt.

Lời giải chi tiết:

Giả sử Q là phép quay tâm O và Đ là phép đối xứng qua đường thẳng d, F là hợp thành của Q và Đ.

Ta có thể xem phép quay Q là hợp thành của hai phép đối xứng Đ1 và Đ2 có các trục đối xứng đi qua O, trong đó trục của Đ2 song song với d.

Như vậy F là hợp thành của ba phép đối xứng: Đ1, Đ2 và Đ.

Nhưng hợp thành của Đ2 và Đ (có trục đối xứng song song) là phép tịnh tiến do đó F là hợp thành của một phép đối xứng và một phép tịnh tiến nên theo câu d), F là phép đối xứng trượt.

LG g

Chứng minh rằng hợp thành của ba phép đối xứng trục là một phép đối xứng trượt.

Lời giải chi tiết:

Suy từ câu d và câu e).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Bài 68 trang 16 SBT Hình học 11 Nâng cao

    Giải bài 68 trang 16 sách bài tập Hình học 11 Nâng cao. Cho hai đoạn thẳng bằng nhau AB và A’B; (AB = A’B;). Chứng minh rằng có một phép đối xứng trượt biến A thành A’, biến B thành B’.

  • Bài 69 trang 16 SBT Hình học 11 Nâng cao

    Giải bài 69 trang 16 sách bài tập Hình học 11 Nâng cao. Cho hai đường thẳng phân biệt a, a’ và phép dời hình F biến a thành a’...

  • Bài 70 trang 16 SBT Hình học 11 Nâng cao

    Giải bài 70 trang 16 sách bài tập Hình học 11 Nâng cao. Cho hai đường tròn có bán kính bằng nhau (O) và (O’)...

  • Bài 71 trang 16 SBT Hình học 11 Nâng cao

    Giải bài 71 trang 16 sách bài tập Hình học 11 Nâng cao. Cho phép vị tự V tâm O, tỉ số k ≠ 1 và phép tịnh tiến T theo vectơ...

  • Bài 72 trang 17 SBT Hình học 11 Nâng cao

    Giải bài 72 trang 17 sách bài tập Hình học 11 Nâng cao. Cho đường tròn (O) với dây cung PQ. Dựng hình vuông ABCD có hai đỉnh A, B nằm trên đường thẳng PQ và hai đỉnh C, D nằm trên đường tròn.

  • Bài 73 trang 17 SBT Hình học 11 Nâng cao

    Giải bài 73 trang 17 sách bài tập Hình học 11 Nâng cao. Cho đường triòn (O) và một điểm P nằm trong đường tròn đó. Một đường thẳng thay đổi đi qua P, cắt (O) tại hai điểm A và B...

  • Bài 74 trang 17 SBT Hình học 11 Nâng cao

    Giải bài 74 trang 17 sách bài tập Hình học 11 Nâng cao. Cho điểm A cố định nằm trên đường tròn (O) và điểm C thay đổi trên đường tròn đó. Dựng hình vuông ABCD. Tìm quỹ tích điểm B và điểm D.

  • Bài 66 trang 16 SBT Hình học 11 Nâng cao

    Giải bài 66 trang 16 sách bài tập Hình học 11 Nâng cao. Cho đường tròn (O) và phép dời hình F biến (O) thành chính nó nhưng F không phải là phép đồng nhất...

  • Bài 65 trang 15 SBT Hình học 11 Nâng cao

    Giải bài 65 trang 15 sách bài tập Hình học 11 Nâng cao. Cho phép dời hình F không phải là phép đồng nhất. ...

  • Bài 64 trang 15 SBT Hình học 11 Nâng cao

    Giải bài 64 trang 15 sách bài tập Hình học 11 Nâng cao. Cho hai điểm A và A’ đối xứng với nhau qua điểm I, F là phép dời hình biến I thành I, biến A thành A’. Chứng minh rằng F là phép đối xứng tâm hoặc đối xứng trục.

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài