Câu 4 trang 114 Sách bài tập Hình học 11 Nâng cao


Đề bài

Cho hình chóp S.ABCD có đáy là hình bình hành. Một mặt phẳng (P) bất kì không đi qua S, cắt các cạnh bên SA, SB, SC, SD lần lượt tại các điểm \({A_1},{B_1},{C_1},{D_1}\) . Dùng phương pháp vectơ, chứng minh rằng

\({{SA} \over {S{A_1}}} + {{SC} \over {S{C_1}}} = {{SB} \over {S{B_1}}} + {{S{\rm{D}}} \over {S{{\rm{D}}_1}}}\)

Lời giải chi tiết

 

Vì ABCD là hình bình hành nên

\(\overrightarrow {SA}  + \overrightarrow {SC}  = \overrightarrow {SB}  + \overrightarrow {S{\rm{D}}} \)

hay \(\overrightarrow {S{\rm{D}}}  = \overrightarrow {SA}  + \overrightarrow {SC}  - \overrightarrow {SB} \)

Đặt

\(\eqalign{  & \overrightarrow {SA}  = a\overrightarrow {S{A_1}} ,\overrightarrow {SB}  = b\overrightarrow {S{B_1}} ,  \cr  & \overrightarrow {SC}  = c\overrightarrow {S{C_1}} ,\overrightarrow {S{\rm{D}}}  = d\overrightarrow {S{{\rm{D}}_1}}  \cr} \)

(với a, b, c, d là các số lớn hơn 1)

Khi đó:

\(\eqalign{  & {{SA} \over {S{A_1}}} + {{SC} \over {S{C_1}}} = a + c  \cr  & {{SB} \over {S{B_1}}} + {{S{\rm{D}}} \over {S{{\rm{D}}_1}}} = b + d \cr} \)

\(\eqalign{  & \overrightarrow {S{{\rm{D}}_1}}  = {1 \over d}.\overrightarrow {S{\rm{D}}}  = {1 \over d}\left( {\overrightarrow {SA}  + \overrightarrow {SC}  - \overrightarrow {SB} } \right)  \cr  &  = {1 \over d}\left( {a\overrightarrow {S{A_1}}  + c\overrightarrow {S{C_1}}  - b\overrightarrow {S{B_1}} } \right)  \cr  &  = {a \over d}.\overrightarrow {S{A_1}}  + {c \over d}.\overrightarrow {S{C_1}}  - {b \over d}.\overrightarrow {S{B_1}}  \cr} \)

Mặt khác các điểm \({A_1},{B_1},{C_1},{D_1}\) thuộc mặt phẳng, nên từ đẳng thức đó suy ra

\({a \over d} + {c \over d} - {b \over d} = 1\)

tức là a + c = b + d

Như vậy  \({{SA} \over {S{A_1}}} + {{SC} \over {S{C_1}}} = {{SB} \over {S{B_1}}} + {{S{\rm{D}}} \over {S{{\rm{D}}_1}}}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.