Câu 10 trang 115 Sách bài tập Hình học 11 Nâng cao


Đề bài

Cho ba tia Ox, Oy, Oz không đồng phẳng.

a) Đặt \(\widehat {xOy} = \alpha ,\widehat {yOz} = \beta ,\widehat {{\rm{zOx}}} = \gamma \) . Chứng minh rằng:

\(\cos \alpha  + \cos \beta  + \cos \gamma  >  - {3 \over 2}\)

b) Gọi \(O{x_1},O{y_1},O{z_1}\)  lần lượt là các tia phân giác của các góc xOy, yOz, zOx. Chứng minh rằng nếu Ox1 và Oy1 vuông góc với nhau thì Oz1 vuông góc với cả Ox1 và Oy1.

Lời giải chi tiết

Lấy \({E_1},{E_2},{E_3}\)  lần lượt thuộc các tia Ox, Oy, Oz sao cho \(O{E_1} = O{E_2} = O{E_3}\).

Đặt \(\overrightarrow {O{E_1}}  = \overrightarrow {{e_1}} ,\overrightarrow {O{E_2}}  = \overrightarrow {{e_2}} ,\overrightarrow {O{E_3}}  = \overrightarrow {{e_3}} \).

a) Do ba tia Ox, Oy, Oz không đồng phẳng nên\({\left( {{{\overrightarrow e }_1} + {{\overrightarrow e }_2} + {{\overrightarrow e }_3}} \right)^2} > 0\),

tức là

\(\eqalign{  & \overrightarrow e _1^2 + \overrightarrow e _2^2 + \overrightarrow e _3^2 \cr&+ 2\left( {{{\overrightarrow e }_1}.{{\overrightarrow e }_2} + {{\overrightarrow e }_2}.{{\overrightarrow e }_3} + {{\overrightarrow e }_3}.\overrightarrow {{e_1}} } \right) > 0  \cr  &  \Leftrightarrow 3{\rm{O}}E_1^2 + 2OE_1^2\left( {\cos \alpha  + \cos \beta  + \cos \gamma } \right) > 0 \cr} \)

Vậy \(\cos \alpha  + cos\beta  + cos\gamma  >  - {3 \over 2}\)

Dễ thấy

\(\eqalign{  & \overrightarrow {O{E_1}}  + \overrightarrow {O{E_2}} //O{x_1}  \cr  & \overrightarrow {O{E_2}}  + \overrightarrow {O{E_3}} //O{y_1}  \cr  & \overrightarrow {O{E_3}}  + \overrightarrow {O{E_1}} //O{z_1}  \cr  & O{x_1} \bot O{y_1} \Leftrightarrow \left( {\overrightarrow {O{E_1}}  + \overrightarrow {O{E_2}} } \right)\left( {\overrightarrow {O{E_2}}  + \overrightarrow {O{E_3}} } \right) = 0 \cr} \)

hay  \({\overrightarrow {O{E_2}} ^2} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_2}}  + \overrightarrow {O{E_1}} .\overrightarrow {O{E_3}}  + \overrightarrow {O{E_2}} .\overrightarrow {O{E_3}}  = 0\)

Ta có:

\(\eqalign{  & \left( {\overrightarrow {O{E_1}}  + \overrightarrow {O{E_2}} } \right)\left( {\overrightarrow {O{E_3}}  + \overrightarrow {O{E_1}} } \right)  \cr  &  = {\overrightarrow {O{E_1}} ^2} + \overrightarrow {O{E_1}} .\overrightarrow {O{E_2}}  + \overrightarrow {O{E_2}} .\overrightarrow {O{E_3}}  + \overrightarrow {O{E_1}} .\overrightarrow {O{E_3}} \cr} \)

  \(= 0\)

Vậy \(O{x_1} \bot O{z_1}\)

Tương tự, ta cũng có \(O{y_1} \bot O{z_1}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.