
Đề bài
Cho tứ diện ABCD. Gọi I, J, H, K, E, F lần lượt là trung điểm của các cạnh AB, CD, BC, AD, AC, BD. Chứng minh rằng
\(A{B^2} + C{{\rm{D}}^2} + A{C^2} + B{{\rm{D}}^2} + B{C^2} + A{{\rm{D}}^2} \)
\(= 4\left( {I{J^2} + H{K^2} + E{F^2}} \right)\)
Lời giải chi tiết
Trước hết, ta chứng minh
\(A{C^2} + B{{\rm{D}}^2} + B{C^2} + A{{\rm{D}}^2} = A{B^2} + C{{\rm{D}}^2} + 4I{J^2}\)
Đặt \(\overrightarrow {DA} = \overrightarrow a ,\overrightarrow {DB} = \overrightarrow b ,\overrightarrow {DC} = \overrightarrow c \)
Ta có:
\(\eqalign{ & \overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AD} + \overrightarrow {DJ} \cr & = - {{\overrightarrow {AB} } \over 2} + \overrightarrow {AD} + {{\overrightarrow {DC} } \over 2} \cr & = - {1 \over 2}\left( { - \overrightarrow a + \overrightarrow b } \right) + \left( { - \overrightarrow a } \right) + \left( {{{\overrightarrow c } \over 2}} \right) \cr & = {{ - \overrightarrow a - \overrightarrow b + \overrightarrow c } \over 2} \cr & {\overrightarrow {AB} ^2} + {\overrightarrow {CD} ^2} + 4{\overrightarrow {IJ} ^2} \cr & = {\left( {\overrightarrow b - \overrightarrow a } \right)^2} + {\overrightarrow c ^2} + {\left( {\overrightarrow a + \overrightarrow b - \overrightarrow c } \right)^2} \cr & = 2{\overrightarrow b ^2} + 2{\overrightarrow a ^2} + 2{\overrightarrow c ^2} - 2\overrightarrow a .\overrightarrow c - 2\overrightarrow b .\overrightarrow c \cr & {\overrightarrow {AC} ^2} + {\overrightarrow {BD} ^2} + {\overrightarrow {BC} ^2} + {\overrightarrow {AD} ^2} \cr & = {\left( {\overrightarrow c - \overrightarrow a } \right)^2} + {\overrightarrow b ^2} + {\left( {\overrightarrow c - \overrightarrow b } \right)^2} + {\overrightarrow a ^2} \cr & = 2{\overrightarrow a ^2} + 2{\overrightarrow b ^2} + 2{\overrightarrow c ^2} - 2\overrightarrow a .\overrightarrow c - 2\overrightarrow b .\overrightarrow c \cr} \)
Vậy, ta có:
\(A{C^2} + B{{\rm{D}}^2} + B{C^2} + A{{\rm{D}}^2} = A{B^2} + C{{\rm{D}}^2} + 4I{J^2}\)
Tương tự, ta có:
\(A{C^2} + B{{\rm{D}}^2} + A{B^2} + C{{\rm{D}}^2}\)
\(= B{C^2} + A{{\rm{D}}^2} + 4H{K^2}\)
\( A{B^2} + C{{\rm{D}}^2} + B{C^2} + A{{\rm{D}}^2} \)
\(= A{C^2} + B{D^2} + 4E{F^2} \)
Từ đó suy ra:
\(A{B^2} + C{{\rm{D}}^2} + A{C^2} + B{{\rm{D}}^2} + B{C^2} + A{{\rm{D}}^2}\)
\(= 4\left( {I{J^2} + H{K^2} + E{F^2}} \right)\)
Loigiaihay.com
Giải bài tập Câu 14 trang 115 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 15 trang 115 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 12 trang 115 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 11 trang 115 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 10 trang 115 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 9 trang 114 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 8 trang 114 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 7 trang 114 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 6 trang 114 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 5 trang 114 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 4 trang 114 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 3 trang 114 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 2 trang 114 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 1 trang 113 Sách bài tập Hình học 11 Nâng cao
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: