Bài 27 trang 9 SBT Hình Học 11 nâng cao


Giải bài 27 trang 9 sách bài tập Hình Học 11 nâng cao. Chứng minh rằng m chỉ cắt (P) tại điểm chung duy nhất M. (Đường thẳng m như thế được gọi là tiếp tuyến của (P) tại điểm M).

Đề bài

Cho parabol (P) có tiêu điểm F và đường chuẩn d. Với điểm M trên (P) ta kẻ \(MH \bot d\,(H \in d)\) và gọi m là phân giác của góc FMH. Chứng minh rằng m chỉ cắt (P) tại điểm chung duy nhất M. (Đường thẳng m như thế được gọi là tiếp tuyến của (P) tại điểm M).

Lời giải chi tiết

Vì M nằm trên parabol (P) nên MF = MH.

Do đó m chính là đường trung trực của đoạn thẳng FH.

Lấy điểm M’ tùy ý nằm trên m, kẻ \(M'H' \bot d\,\left( {H' \in \,d} \right)\) thì ta có: \(M'F = M'H \ge M'H'.\)

Nếu M’ không trùng với  M thì M’F > M’H’ nên M’ không nằm trên (P).

Vậy M chỉ cắt (P) tại điểm duy nhất  M.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Phép đối xứng trục

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài