Bài 1 trang 121 SGK Giải tích 12

Bình chọn:
3.6 trên 23 phiếu

Giải bài 1 trang 121 SGK Giải tích 12. Tính diện tích hình phẳng giới hạn bởi các đường:

Đề bài

Tính diện tích hình phẳng giới hạn bởi các đường:

a) \(y={x^2},y =x + 2\);   

b) \(y = |lnx|, y = 1\);

c) \(y = {\left( x-6 \right)}^2,y = 6x-{x^2}\) 

Phương pháp giải - Xem chi tiết

Cho hai hàm số  \(y = f\left( x \right);\;\;y = g\left( x \right)\) liên tục trên đoạn  \(\left[ {a;\;b} \right]\). Gọi \(D\) là hình phẳng được giới hạn bởi đồ thị hai hàm số trên và các đường thẳng  \(x = a;\;\;x = b\). Khi đó diện tích của hình phẳng \(D\) được tính bởi công thức: \[{S_D} = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} .\]

Lời giải chi tiết

a) Phương trình hoành độ giao điểm của hai đồ thị là:  \(f(x) = x^2-x -2 =0 ⇔(x+1)(x-2)=0 \\ ⇔\left[ \begin{array}{l}x + 1=0\\x - 2=0\end{array} \right. ⇔ \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right..\) 

Diện tích hình phẳng cần tìm là :

\(S=\int_{-1}^{2}\left |x^{2}- x- 2 \right |dx = \left | \int_{-1}^{2}\left (x^{2}- x- 2 \right ) dx \right |\)

    \(=\left |\frac{x^{3}}{3}-\frac{x^{2}}{2}-2x|_{-1}^{2} \right |=\left |\frac{8}{3}-2-4-(\frac{1}{3}-\frac{1}{2}+2) \right |\)\(=\tfrac{9}{2}\) (đvdt).

b) Phương trình hoành độ giao điểm của hai đồ thị là: 

\(f(x) = 1 - |lnx| = 0  ⇔ lnx = ± 1⇔\left[ \begin{array}{l}x = e\\x =  \frac{1}{e}\end{array} \right..\) 

                                                 

Ta có:  \(y = |lnx| = lnx\)  nếu  \(lnx ≥ 0\),  tức là  \(x ≥ 1\).

hoặc  \(y = |lnx| = - lnx\)  nếu  \(lnx < 0\), tức là  \(0 < x < 1\).

Dựa vào đồ thị hàm số vẽ ở hình trên ta có diện tích cần tìm là :  

\(S=\int_{\frac{1}{e}}^{e}|1- |lnx||dx =\int_{\frac{1}{e}}^{1}(1+lnx)dx +\int_{1}^{e}(1-lnx)dx\)

     \(= x|_{\frac{1}{e}}^{1}+\int_{\frac{1}{e}}^{1}lnxdx +x|_{1}^{e}-\int_{1}^{e}lnxdx\)

     \(=-\frac{1}{e}+e+\int_{\frac{1}{e}}^{1}lndx-\int_{1}^{e}lnxdx\) 

Ta có  \(∫lnxdx = xlnx - ∫dx = xlnx  –  x  + C\),  thay vào trên ta được  :

\(S=e-\frac{1}{e}+(xlnx-x)|_{\frac{1}{e}}^{1}- (xlnx-x)|_{1}^{e}=e+\frac{1}{e}-2\) (đvdt).

c) Phương trình hoành độ giao điểm của hai đồ thị là:

\(f\left( x \right) =6x-{x^2}-{\left( {x -6} \right)^2} = - 2({x^2}-9x+ 18)=0\)

\(⇔  - 2({x^2}-9x+ 18) ⇔ (x-3)(x-6)=0\\⇔ \left[ \begin{array}{l}x - 3=0\\x - 6=0\end{array} \right.⇔\left[ \begin{array}{l}x = 3\\x = 6\end{array} \right..\) 

Diện tích cần tìm là:

\(S=\int_{3}^{6}|-2(x^{2}-9x+18)|dx\)

\(=|2\int_{3}^{6}(x^{2}-9x+18)dx|\)

\(=\left |2(\frac{x^{3}}{3}-\frac{9}{2}x^{2}+18x)|_{3}^{6} \right | \\ =45-36=9 \, \, (đvdt)\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Bài 3. Ứng dụng của tích phân trong hình học.

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu