Bài 5 trang 121 SGK Giải tích 12


Giải bài 5 trang 121 SGK Giải tích 12. Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox.Tính thể tích của khối tròn xoay.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác vuông \(OPM\) có cạnh \(OP\) nằm trên trục \(Ox\). Đặt  \(\widehat {POM} = \alpha \)

và \(OM = R\), \(\left( {0 \le \alpha  \le {\pi  \over 3},R > 0} \right)\)

Gọi   là khối tròn xoay thu được khi quay tam giác đó xung quanh \(Ox\) (H.63).

  

LG a

a) Tính thể tích của  theo \(α\) và \(R\).      

Phương pháp giải:

Hình phẳng cần tính thể tích được giới hạn bởi đoạn thẳng \(OM, \, \, MP\) và trục hoành.

+) Xác định phương trình đường thẳng \(OM\) và sử dụng công thức tính thể tích để tính thể tích khối tròn xoay   cần tính.

Lời giải chi tiết:

Ta có:  \(\left\{ \begin{array}{l}{x_M} = OP = R\cos \alpha \\{y_M} = PM = R\sin \alpha \end{array} \right. \)\(\Rightarrow \left\{ \begin{array}{l}R = \dfrac{{{x_M}}}{{\cos \alpha }}\\{y_M} = \dfrac{{{x_M}}}{{\cos \alpha }}.\sin \alpha \end{array} \right. \) \(\Rightarrow {y_M} = x_M \tan \alpha .\)

\( \Rightarrow \) Điểm M thuộc đường thẳng \(y=x.\tan \alpha .\)

Mà O cũng thuộc đường thẳng trên nên phương trình đường thẳng \(OM\) là \(y=x.\tan \alpha .\)

Khi đó thể tích của khối tròn xoay là:

\(\begin{array}{l}V = \pi \int\limits_0^{R\cos \alpha } {{x^2}{{\tan }^2}\alpha dx}  \\= \left. {\pi {{\tan }^2}\alpha .\dfrac{{{x^3}}}{3}} \right|_0^{R\cos \alpha }\\= \dfrac{{\pi {R^3}}}{3}.{\tan ^2}\alpha .{\cos ^3}\alpha  \\= \dfrac{{\pi {R^3}}}{3}.{\sin ^2}\alpha .\cos \alpha \\ = \dfrac{{\pi {R^3}}}{3}.\cos \alpha \left( {1 - {{\cos }^2}\alpha } \right) \\= \dfrac{{\pi {R^3}}}{3}\left( {\cos \alpha  - {{\cos }^3}\alpha } \right).\left( {dvtt} \right).\end{array}\)

Cách khác:

Ta có: \(\left\{ \begin{array}{l}OP = R\cos \alpha \\MP = R\sin \alpha \end{array} \right.\)

Khi quay tam giác OPM quanh trục Ox ta được khối nón tròn xoay có bán kính đáy \(r = MP = R\sin \alpha \) và chiều cao \(h = OP = R\cos \alpha \)

Thể tích khối nón là:

\(\begin{array}{l}
V = \frac{1}{3}\pi {r^2}h\\
= \frac{1}{3}\pi {\left( {R\sin \alpha } \right)^2}.R\cos \alpha \\
= \frac{1}{3}\pi {R^3}{\sin ^2}\alpha \cos \alpha \\
= \frac{{\pi {R^3}}}{3}\left( {1 - {{\cos }^2}\alpha } \right)\cos \alpha \\
= \frac{{\pi {R^3}}}{3}\left( {\cos \alpha - {{\cos }^3}\alpha } \right)
\end{array}\)

LG b

b) Tìm \(α\) sao cho thể tích  là lớn nhất.

Phương pháp giải:

Tính được thể tích của khối tròn xoay   theo \(\alpha.\) Khảo sát hàm số \(V=V(\alpha)\) để tìm thể tích lớn nhất.

Lời giải chi tiết:

Xét hàm số: \(V (\alpha) = \dfrac{{\pi {R^3}}}{3}\left( {\cos \alpha  - co{s^3}\alpha } \right).\)

Đặt  \( t = \cos \alpha .\)

Với  \(\alpha  \in \left[ {0;\dfrac{\pi }{3}} \right] \Rightarrow t \in \left[ {\dfrac{1}{2};1} \right].\)

Khi đó ta xét hàm: \(V\left( t \right) = \dfrac{{\pi {R^3}}}{3}\left( {t - {t^3}} \right)\)  trên \(\left[ {\dfrac{1}{2};1} \right].\)

Có:  \(V'\left( t \right) = \dfrac{{\pi {R^3}}}{3}\left( {1 - 3{t^2}} \right) \)

\(\Rightarrow V'\left( t \right) = 0\)\( \Leftrightarrow 1 - 3{t^2} = 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}t = \dfrac{{\sqrt 3 }}{3}\;\;\left( {tm} \right)\\t =  - \dfrac{{\sqrt 3 }}{3}\;\;\left( {ktm} \right)\end{array} \right..\)

Ta có bảng biến thiên:

\( \Rightarrow \) Hàm số đạt giá trị lớn nhất khi  \(t = \dfrac{{\sqrt 3 }}{3} \Rightarrow \cos \alpha  = \dfrac{{\sqrt 3 }}{3} \) \(\Leftrightarrow \alpha  = \arccos \dfrac{{\sqrt 3 }}{3}\).

Vậy thể tích khối   lớn nhất khi \(\alpha  = \arccos \dfrac{{\sqrt 3 }}{3}.\)

Loigiaihay.com


Bình chọn:
3.5 trên 11 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài