Bài 58 trang 48 SBT Hình học 10 Nâng cao


Giải bài tập Bài 58 trang 48 SBT Hình học 10 Nâng cao

Đề bài

Chứng minh rằng trong tam giác \(ABC\) ta có

\(\cot A + \cot B + \cot C = \dfrac{{{a^2} + {b^2} + {c^2}}}{{abc}}R\).

Lời giải chi tiết

\(\cot A = \dfrac{{\cos A}}{{\sin A}} = \dfrac{{\dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{{\dfrac{a}{{2R}}}}\)

\(= \dfrac{{{b^2} + {c^2} - {a^2}}}{{abc}}R\)

Tương tự ta cũng có \(\cot B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{abc}}R  ;\)

\(  \cot C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{abc}}R.\)

Từ đó suy ra \(\cot A + \cot B + \cot C = \dfrac{{{a^2} + {b^2} + {c^2}}}{{abc}}R.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí