Giải bài 2 trang 10 SGK Giải tích 12


Tìm các khoảng đơn điệu của các hàm số:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các khoảng đơn điệu của các hàm số:

LG a

a) \(y=\dfrac{3x+1}{1-x}\) ;

Phương pháp giải:

+) Tìm tập xác định của hàm số.

+) Tính đạo hàm của hàm số. Tìm các điểm xi (I =1,2,3,…,n) mà tại đó đạo hàm bằng 0 hoặc không xác định

+) Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên

+) Dựa vào bảng biến thiên để kết luận khoảng đồng biến và nghịch biến của hàm số trên tập xác định của nó. (nếu y’ > 0 thì hàm số đồng biến, nếu y’ < 0 thì hàm số nghịch biến)

Ở bài toán này cần chú ý các tập xác định của hàm số.

Lời giải chi tiết:

\(y=\dfrac{3x+1}{1-x}=\dfrac{3x+1}{-x+1}\)        

Tập xác định: \(D=R\backslash \left\{ 1 \right\}.\)

Có: \(y'=\dfrac{3.1-(-1).1}{{{\left( -x+1 \right)}^{2}}}\)\(=\dfrac{4}{{{\left( -x+1 \right)}^{2}}}>0\ \forall \ x\in D.\)

Bảng biến thiên:

Vậy hàm số đồng biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ 1 \right)\) và \(\left( 1;+\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào BBT: \(\mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{3x + 1}}{{1 - x}} =  - 3,\) \(\mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{3x + 1}}{{1 - x}} =  - \infty ,\) \(\mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{3x + 1}}{{1 - x}} =  + \infty \)            

LG b

b) \(y=\dfrac{x^{2}-2x}{1-x}\) ;

Lời giải chi tiết:

\(y=\dfrac{{{x}^{2}}-2x}{1-x}.\)

Tập xác định: \(D=R\backslash \left\{ 1 \right\}.\)

Có: \(y'=\dfrac{\left( 2x-2 \right)\left( 1-x \right)+{{x}^{2}}-2x}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-{{x}^{2}}+2x-2}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-\left( {{x}^{2}}-2x+2 \right)}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-\left( {{x}^{2}}-2x+1 \right)-1}{{{\left( 1-x \right)}^{2}}}\) \(=\dfrac{-{{\left( x-1 \right)}^{2}}-1}{{{\left( 1-x \right)}^{2}}}\) \(=-1-\dfrac{1}{{{\left( 1-x \right)}^{2}}}<0\ \forall x\in D.\)

Bảng biến thiên:

Vậy hàm số nghịch biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ 1 \right)\) và \(\left( 1;+\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào bảng biến thiên:

\(\begin{align}& \underset{x\to +\infty }{\mathop{\lim }}\,\dfrac{{{x}^{2}}-2x}{1-x}=-\infty \cr& \underset{x\to -\infty }{\mathop{\lim }}\,\dfrac{{{x}^{2}}-2x}{1-x}=+\infty \  \\ & \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\dfrac{3x+1}{1-x}=+\infty \cr&\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\dfrac{3x+1}{1-x}=-\infty  \\ \end{align}\)

LG c

c) \(y=\sqrt{x^{2}-x-20}\) ;   

Lời giải chi tiết:

\(y=\sqrt{{{x}^{2}}-x-20}\)                     

Có \({{x}^{2}}-x-20\ge 0\) \(\Leftrightarrow \left( x+4 \right)\left( x-5 \right)\ge 0\) \(\Leftrightarrow \left[ \begin{align} & x\le -4 \\ & x\ge 5 \\ \end{align} \right..\)

Tập xác định: \(D=\left( -\infty ;-4 \right]\cup \left[ 5;+\infty  \right).\)

Có \(y'=\dfrac{2x-1}{2\sqrt{{{x}^{2}}-x-20}}\) \(\Rightarrow y'=0\Leftrightarrow 2x-1=0\)\(\Leftrightarrow x=\dfrac{1}{2}\notin D\)

Bảng biến thiên:

Vậy hàm số nghịch biến trên khoảng \(\left( -\infty ;-4 \right)\) và đồng biến trên khoảng \(\left( 5;+\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào BBT:

\(\begin{align}  & \underset{x\to -\infty }{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=+\infty\cr&\underset{x\to +\infty }{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=+\infty  \\  & \underset{x\to {{4}^{-}}}{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=0\cr& \underset{x\to {{5}^{+}}}{\mathop{\lim }}\,\sqrt{{{x}^{2}}-x-20}=0.\  \\ \end{align}\)

LG d

d) \(y=\dfrac{2x}{x^{2}-9}\).

Lời giải chi tiết:

\(y=\dfrac{2x}{{{x}^{2}}-9}.\)

Có \({{x}^{2}}-9\ne 0\Leftrightarrow x\ne \pm 3.\)

Tập xác định:  \(D=R\backslash \left\{ \pm 3 \right\}.\)

Có: \(y'=\dfrac{2\left( {{x}^{2}}-9 \right)-2x.2x}{{{\left( {{x}^{2}}-9 \right)}^{2}}}\) \(=\dfrac{-2{{x}^{2}}-18}{{{\left( {{x}^{2}}-9 \right)}^{2}}}\) \(=\dfrac{-2\left( {{x}^{2}}+9 \right)}{{{\left( {{x}^{2}}-9 \right)}^{2}}}<0\ \forall \ x\in D.\)

Bảng biến thiên:

Vậy hàm số nghịch biến trên các khoảng xác định của nó là: \(\left( -\infty ;\ -3 \right);\ \left( -3;\ 3 \right)\) và \(\left( 3;\ +\infty  \right).\)

Chú ý: Cách tính giới hạn để điền vào BBT:

\(\begin{align}& \underset{x\to -\infty }{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=0\cr&\underset{x\to +\infty }{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=0 \\ & \underset{x\to -{{3}^{+}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=+\infty \cr&\underset{x\to -{{3}^{-}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=-\infty  \\ & \underset{x\to {{3}^{+}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=+\infty \cr& \underset{x\to {{3}^{-}}}{\mathop{\lim }}\,\dfrac{2x}{{{x}^{2}}-9}=-\infty . \\ \end{align}\)

Loigiaihay.com


Bình chọn:
4.5 trên 113 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí