Bài 1 trang 89 SGK Giải tích 12

Bình chọn:
3.9 trên 20 phiếu

Giải bài 1 trang 89 SGK Giải tích 12. Giải các bất phương trình mũ

Đề bài

Giải các bất phương trình mũ:

a) \(2^{-x^{2}+3x}< 4\);

b) \(\left ( \frac{7}{9} \right )^{2x^{2}-3x} ≥ \frac{9}{7}\);

c) \({3^{x + 2}} +{3^{x - 1}} \le 28\);

d) \({4^x}-{\rm{ }}{3.2^x} + {\rm{ }}2{\rm{ }} > {\rm{ }}0\).

Phương pháp giải - Xem chi tiết

a) Đưa về cùng cơ số 2, giải bất phương trình mũ cơ bản: \({a^{f\left( x \right)}} < {a^{g\left( x \right)}} \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\f\left( x \right) < g\left( x \right)\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\f\left( x \right) > g\left( x \right)\end{array} \right.\end{array} \right.\).

b) Đưa về cùng cơ số \({7} \over {9}\), giải bất phương trình mũ cơ bản: \({a^{f\left( x \right)}} < {a^{g\left( x \right)}} \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a > 1\\f\left( x \right) < g\left( x \right)\end{array} \right.\\\left\{ \begin{array}{l}0 < a < 1\\f\left( x \right) > g\left( x \right)\end{array} \right.\end{array} \right.\).

c) Sử dụng công thức \({a^m}.{a^n} = {a^{m + n}}\), làm xuất hiện nhân tử chung ở VT. Đưa bất phương trình ban đầu về dạng phương trình mũ cơ bản.

d) Giải bất phương trình mũ bằng cách đặt ẩn phụ: \(t = {2^x}\,\,\left( {t > 0} \right)\).

Lời giải chi tiết

\(\begin{array}{l}a)\,\,\,{2^{ - {x^2} + 3x}} < 4\\\Leftrightarrow {2^{ - {x^2} + 3x}} < {2^2}\\\Leftrightarrow - {x^2} + 3x < 2\\\Leftrightarrow {x^2} - 3x + 2 > 0\\\Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 1\end{array} \right.\end{array}\).

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\)

\(\begin{array}{l}b)\,\,\,{\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \ge \frac{9}{7}\\\Leftrightarrow {\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \ge {\left( {\frac{7}{9}} \right)^{ - 1}}\\\Leftrightarrow 2{x^2} - 3x \le - 1\\\Leftrightarrow 2{x^2} - 3x + 1 \le 0\\\Leftrightarrow \frac{1}{2} \le x \le 1\end{array}\).

Vậy tâp nghiệm của bất phương trình là: \(S = \left[ {\frac{1}{2};1} \right]\).

\(\begin{array}{l}c)\,\,\,\,{3^{x + 2}} + {3^{x - 1}} \le 28\\\Leftrightarrow {3^{x - 1}}{.3^3} + {3^{x - 1}} \le 28\\\Leftrightarrow {3^{x - 1}}\left( {{3^3} + 1} \right) \le 28\\\Leftrightarrow {3^{x - 1}}.28 \le 28\\\Leftrightarrow {3^{x - 1}} \le 1\\\Leftrightarrow {3^{x - 1}} \le {3^0}\\\Leftrightarrow x - 1 \le 0\\\Leftrightarrow x \le 1\end{array}\).

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;1} \right]\).

d) \({4^x}-{\rm{ }}{3.2^x} + {\rm{ }}2{\rm{ }} > {\rm{ }}0\)

Đặt \(t = 2^x >0\), bất phương trình đã cho trở thành 

\(\begin{array}{l}{t^2} - 3t + 2 > 0 \Leftrightarrow \left[ \begin{array}{l}t > 2\\t < 1\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}{2^x} > 2\\{2^x} < 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{2^x} > {2^1}\\{2^x} < {2^0}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 1\\x < 0\end{array} \right.\end{array}\).

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Bài 6. Bất phương trình mũ và bất phương trình lôgarit

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu